Ремонт помпы (насоса охлаждающей жидкости) отечественных машин. Как устроен сальник водяного насоса


Сальниковая набивка и уплотнения для центробежных насосов

Во многих отраслях промышленности, сельском и коммунальном хозяйствах, а также и в частных домовладениях никак не обойтись без вспомогательного оборудования, которое значительно облегчает различные технологичные процессы.

Одним из видов такого оборудования являются центробежные насосы, главное назначение которых заключается в перекачивании жидкостей различного рода. Чтобы процесс перемещения жидкостей происходил качественно и бесперебойно, прежде всего, стоит заботиться о техническом состоянии насосного оборудования.

Основной операцией технического обслуживания центробежных насосов является установка уплотнительных материалов, которые призваны упреждать протечку жидкости в местах соединения деталей механических узлов.

На сегодняшний день существует множество видов уплотнительных устройств, поэтому перед специалистами иногда возникает дилемма о том, какое уплотнение лучше всего устанавливать на центробежных насосах.

Чтобы ответить на этот вопрос, мы в этой статье постараемся максимально подробно описать все виды уплотнений для центробежных агрегатов, а также расскажем об их свойствах и преимуществах.

Виды уплотнительных устройств

С развитием технического прогресса, естественно, получают видоизменения и различные механизмы и устройства.

Такая участь также постигла и уплотнительные материалы и устройства для центробежных насосов.

На сегодняшний день различают следующие типы уплотнительных устройств:

  • сальниковая набивка;
  • манжетное уплотнение;
  • торцевые уплотнения.

Чтобы понимать, что собой представляет каждый из типов уплотнений, опишем их по отдельности.

Сальниковая набивка

Устройство этого типа применяется для уплотнения с незапамятных времен и до наших дней.

Конструкция сальниковой набивки выглядит следующим образом:

  • специальный шнур, пропитанный особенными веществами, которые зависят от сферы применения уплотнения;
  • шнур укладывается в специальный паз корпуса центробежного насоса вокруг основного вала;
  • шнур прижимается к корпусу специальной крышкой с помощью болтов.

При этом важно знать, что сальниковая набивка должна постоянно находиться в смоченном виде. Иначе говоря, крышка сальника прижимается до такого момента, чтобы при работе агрегата в набивку попадала жидкость. В противном случае, при сильном уплотнении сальниковой набивки, она быстро может разрушиться и выйти из строя.

И хотя некоторые скептики считают, что сальниковая набивка – это не технологичное устройство, все же она обладает рядом следующих преимуществ:

  • имеет низкий коэффициент трения;
  • обладает свойством самосмазывания;
  • имеет достаточно высокий уровень теплопроводности;
  • не теряет своих технических качеств длительный период.

На сегодняшний день существуют следующие виды сальниковой набивки:

  • материалы на синтетической основе, которые обладают свойствами прочности и хорошему сопротивлению агрессивным средам;
  • графитовые уплотнения имеют прекрасные свойства упругости и пластичности;
  • фторопластовые уплотнения имеют хорошую адгезию к холодным средам.

Манжетные

Отличительной особенностью уплотнений этого типа является то, что они могут быть изготовлены из резины различных видов, а именно:

  • нитриловая резина, которая применяется в центробежных насосах для перекачки нефтепродуктов;
  • фторкаучуковая резина, которая используется в агрегатах, перекачивающих агрессивные кислотные жидкости;
  • этиленпропиленовый каучук, уплотнения из которого используются для перекачки воды и других неагрессивных жидкостей.

Стоит также отметить, что все виды манжетных уплотнений изготавливаются согласно ГОСТ 8752-79.

Что же касается конструкции уплотнений этого вида, то она может быть представлена следующим образом:

  • мягкая и эластичная манжета, которая непосредственно надевается на основной вал центробежного насоса;
  • прижим манжеты к корпусу осуществляется с помощью давления жидкости в корпусе с одной стороны, а с другой – специальным пружинистым кольцом.

Примите во внимание: для уплотнения соединения деталей насоса можно использовать несколько последовательных манжет подряд.

Среди преимуществ использования манжетных уплотнений в центробежных насосах можно выделить следующие важные характеристики:
  • небольшие размеры;
  • простота исполнения;
  • высокий уровень герметичности;
  • надежность уплотнения при остановленном состоянии насосного агрегата.

Торцевой тип

Уплотнения этого типа считаются сравнительно новым изобретением герметизации.

Торцевые уплотнения принято еще называть механическими.

Связано это, прежде всего, с конструктивными особенностями уплотнения, которые заключаются в следующих важных моментах:

  • неподвижный элемент, который закреплен непосредственно на корпусе центробежного насоса;
  • подвижный элемент, который представлен в виде кольца, которое закреплено на валу и вращается одновременно с ним.

Подвижная часть прижимается к неподвижному элементу с помощью специальной пружины.

Возьмите на заметку: износ трущихся поверхностей торцевого уплотнения вполне восполняется прижиманием подвижной части с помощью пружины.

На сегодняшний день существуют различные классификации торцевых уплотнений, которые зависят от разных факторов.

Поэтому мы приведем несколько типов классификации уплотнений этого типа.

По способу установки различают следующие виды:

  • одинарное торцевое уплотнение, которое является самой распространенной конструкцией; в основном применяется в тех условиях, где не требуется полной герметичности;
  • двойное торцевое уплотнение может устанавливаться по схемам «спина к спине» и последовательный «тандем»; уплотнение этого вида полностью исключает утечку жидкости благодаря тому, что работают две пары уплотняющих элементов.

По особенностям конструкции различают следующие виды:

  • пружинное торцевое уплотнение, отличающиеся наиболее простой конструкцией, которая может содержать одну или несколько пружин;
  • сильфонное торцевое уплотнение, в конструкции которого уплотнитель прижимается к недвижимому элементу с помощью специальной гофрированной пластины, имеющей название сильфона.

По способу крепления принято различать следующие виды:

  • картриджное торцевое уплотнение представляет собой цельную конструкцию элементов, которая всем блоком надевается на вал центробежного насоса и закрепляется специальными штифтами;
  • компонентное торцевое уплотнение имеет ту особенность, что все элементы (пружины, кольца, сильфон) монтируются последовательно, но по отдельности.

Преимущества же использования торцевых уплотнений центробежного насоса заключаются в следующих важных моментах:

  • значительное уменьшение потерь перекачиваемой жидкости;
  • полная герметизация корпуса насоса;
  • отсутствует износ вала;
  • низкий коэффициент трения;
  • использование для перекачки жидкостей различного рода.

Таким образом, мы осветили все важные нюансы использования торцевых уплотнений на центробежных насосах, а также рассказали, какие существуют их виды и типы. Надеемся, что статья для вас окажется достаточно информативной.

Смотрите видеоинструкцию по замене торцевого уплотнения центробежного насоса на примере агрегата DP-Pumps:

Оцените статью: Поделитесь с друзьями!

septik.guru

Разновидности сальников для насосов и правильный уход за ними.

Количество просмотров публикации Разновидности сальников для насосов и правильный уход за ними. - 566

Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу. Размещенный с всасывающей стороны сальник исключает возможность попадания воздуха в полость насоса. Сальник, набитый со стороны нагнетания, не позволяет вытекать жидкости из насоса.

Хороший сальник должен быть достаточно мягким и легко набиваться. В качестве материала для ᴇᴦο изготовления используются˸ пенька, асбестовый шнур, хлопок, бумажная пряжа, которые пропитываются графитовой смазкой.

Сальник, используемый на всасывающей стороне, оснащается водяным затвором, которые представляет собой кольцо, поджимаемое жидкостью из напорной линии. Благодаря ему доступ воздуха в полость насоса полностью исключается. В насосах, предназначенных для работы с агрессивными средами, используется точно такой же затвор, но с использованием особой жидкости. Если нагнетаемая жидкость имеет повышенную температуру, сальники снабжаются охлаждающей рубашкой.

От сальников в большой степени зависит эффективность и надежность работы насосного оборудования. В ходе эксплуатации обслуживающим персоналом осуществляется периодический осмотр сальников, их своевременная замена и правильный уход. Для правильной работы спальника важно обеспечить грамотную сборку узла, в состав которого он входит. В ходе выработки набивки должна осуществляться равномерная подтяжка, которая исключает разгерметизацию. Монтаж сальников должен осуществляться строго по инструкции и чертежам, входящим в комплект поставки насосного оборудования.

В рабочих чертежах обязательно указывается тип и диаметр шнура сальниковой набивки. Набивка укладывается в предназначенную для нее полость отдельными кольцами, концы которых срезаны под острым углом. Для подготовки звеньев используется оправка, диаметр которой соответствует диаметру защитной втулки или шейки вала. Шнур наматывается на оправку, а затем разрезается в нужных местах под углом, относительно оси оправки. Для недопущения образования продольных щелей, кольца смещаются друг относительно друга на треть оборота. Ремонт поршневых насосовсмотрите в разделе услуги.

Процесс сборки узла сальника выглядит следующим образом. Сначала укладывается ряд колец набивки, а затем устанавливается уплотнительное кольцо. Поверх него вновь кладут несколько колец набивки.

Затем вся конструкция стягивается нажимной буксой, которая не должна тереться о вал и иметь перекоса. Во время сборки важно не допустить попадания сальниковой набивки в кольцевой зазор, образованной нажимной буксой и корпусом сальника. Основательная подтяжка сальника осуществляется в момент первого запуска насоса.

При установке кольца гидравлического уплотнения следует помнить о том, что ᴇᴦο передний срез должен располагаться на оси отверстия, предназначенного для подвода воды к сальнику. В таком положении оно не препятствует свободному доступу воды в гидравлическое уплотнение, благодаря тому, что в процессе подтяжки сальника кольцо, передвигаясь строго вдоль оси, идеально защищает отверстие от попадания набивки. Необходимость в кольце отпадает, в случае если насос работает под давлением, то есть если давление на входе всасывающий трубопровод выше атмосферного.

referatwork.ru

Сальник патронного типа для водяного насоса

 

Изобретение направлено на повышение надежности работы водяного насоса за счет установки сальника патронного типа узловым способом, что приводит к универсальности использования колец пары трения и замены пары трения "кольцо скольжения - торец крыльчатки" на пару трения "кольцо по кольцу", что, в свою очередь, приводит к снижению температурного режима, исключению дорогостоящей и технологически сложной операции обработки торца крыльчатки и продлению срока эксплуатации водяного насоса. При работе насоса жидкость попадает в зону пары трения "кольцо по кольцу", одно из которых неподвижное графитовое, второе кольцо упорное вращающееся чугунное, для повышенного отвода тепла от пары трения в упорном чугунном кольце выполнена канавка. Для увеличения скорости перемешивания жидкости в зоне сальника патронного типа на внешнем торце патрона выполнен импеллер. Между торцом патрона сальника и торцом крыльчатки выполнен зазор. При установке сальника происходит запрессовка одновременно по наружному диаметру резинового элемента и по внутреннему диаметру патрона. Для исключения поводок колец пар трения при работе насоса используется их упругая установка и кольцо-фиксатор. Упругая установка колец пары трения осуществляется с определенным натягом и предотвращает проворачивание колец при работе. 3 з.п. ф-лы, 1 ил.

Сальник патронного типа для водяного насоса предназначен для перекачивания высоко- и низкотемпературных жидкостей и может быть использован в насосах для автомобилестроения и смежных областях.

Известен "Насос для перекачивания жидкости" по патенту РФ № 2133380 от 16.12.97 г., МПК F 04 D 7/02, 29/22, 29/12, опубл. 20.07.99 г., бюл. № 20, содержащий сборный корпус, крыльчатку, втулку, вал, прокладки, резьбовые элементы, штифт, шайбы, фланец.

Крыльчатка выполнена сборной в составе со ступенчатым кольцевым валом. Вал снабжен рифлениями на малом кольцевом выступе, а с другой стороны содержит торец с глухим отверстием. Торец вала взаимодействует с резиновой манжетой, в которой размещено графитовое кольцо. Поверхность второго оппозитно расположенного первому графитового кольца установлена неподвижно с возможностью восприятия осевых нагрузок от подвижного графитового кольца. Подвижное графитовое кольцо упруго удерживается в торце ведомого вала. Крыльчатка установлена на рифлениях вала и выполнена из прочных термостойких материалов.

Самым близким к заявляемому объекту по технической сущности и достигаемому эффекту является "Втулка комбинированная" по патенту РФ № 2162170 от 6.01.00 г., МПК F 16 В 19/00, 19/02, 19/04, опубл. 20.01.01 г., бюл. № 2, содержащая элементы армирования, графитизированное кольцо, пружину, кольцевой слой резиновой смеси, служащий для герметичного соединения с корпусом водяного насоса.

Предлагаемое техническое решение направлено на повышение надежности работы водяного насоса за счет установки сальника патронного типа узловым способом, что приводит к универсальности использования колец пары трения и замены пары трения "кольцо скольжения - торец крыльчатки" на пару трения "кольцо по кольцу", что в свою очередь приводит к снижению температурного режима, исключению дорогостоящей и технологически сложной операции обработки торца крыльчатки и продлению срока эксплуатации водяного насоса. В сальнике патронного типа за счет подбора упругих характеристик резинового элемента и пружины, а также возможности уменьшения диаметральных размеров резинового элемента, патрона, колец пары трения имеется возможность снижения в два раза удельного давления и окружных скоростей на 30% в паре трения, что значительно повышает ее износостойкость и работоспособность насоса в целом, а использование в паре трения более дешевых материалов снижает стоимость насоса при крупносерийном производстве.

Поставленная задача решается за счет того, что сальник патронного типа для водяного насоса содержит металлический патрон, на внешнем торце которого выполнен импеллер, содержащий шесть радиальных канавок прямоугольного сечения глубиной в пределах от 0,3 до 0,7 мм; кольцо-фиксатор; упругий резиновый элемент с двумя армирующими кольцами и конической пружиной; пару трения "кольцо по кольцу", одно из которых неподвижное графитовое, второе кольцо упорное вращающееся чугунное, выполненное с канавкой прямоугольного сечения, глубина которой лежит в пределах от 2 до 3% от ширины кольца, для отвода тепла от пары трения; уплотнительную прокладку Г-образного сечения, посредством которой достигается герметичность упорного вращающегося чугунного кольца. При работе насоса для повышенного отвода тепла от пары трения в упорном чугунном кольце изготовлена канавка прямоугольного сечения, глубина которой лежит в пределах от 2 до 3% от ширины кольца. За счет канавки увеличивается площадь соприкосновения жидкости с чугунным кольцом, что является основным фактором теплоотвода от пары трения "кольцо по кольцу", а между торцом патрона сальника и торцом крыльчатки выполнен зазор в пределах от 0,7 до 1,3 мм для предотвращения передачи тепла от сальника к крыльчатке, что позволяет использование крыльчатки различной конструкции, т.к. она не связана с сальником. Для увеличения скорости перемешивания жидкости в зоне сальника патронного типа на внешнем торце патрона выполнен импеллер, содержащий шесть радиальных канавок прямоугольного сечения глубиной в пределах от 0,3 до 0,7 мм. Увеличение скорости перемешивания предотвращает застой жидкости и увеличивает теплоотвод от зон пары трения. Для исключения поводок колец пар трения при работе насоса используется их упругая установка без применения штифтов. Упругая установка колец пары трения осуществляется с определенным натягом и предотвращает проворачивание колец при работе.

Суть технического решения поясняется чертежом, где изображен сальник патронного типа для водяного насоса.

На чертеже изображен упругий резиновый элемент 1, наружное металлическое армирующее кольцо 2, внутреннее металлическое армирующее кольцо 3, неподвижное графитовое кольцо 4, вращающееся чугунное упорное кольцо 5, уплотнительная прокладка Г-образного сечения 6, металлический патрон сальника водяного насоса 7, торец патрона сальника с импеллером 8, кольцо-фиксатор 9, коническая пружина 10, зазор 11, крыльчатка 12, канавка прямоугольного сечения 13, торец 14 крыльчатки.

Предлагаемое устройство содержит металлический патрон 7, на внешнем торце которого выполнен импеллер 8, содержащий шесть радиальных канавок прямоугольного сечения глубиной в пределах от 0,3 до 0,7 мм, упругий резиновый элемент 1 с двумя армирующими кольцами - наружное 2 и внутреннее 3 и конической пружиной 10, пару трения "кольцо по кольцу", одно из которых неподвижное графитовое 4, второе кольцо упорное вращающееся чугунное 5, выполненное с канавкой прямоугольного сечения 13 для отвода тепла от пары трения, уплотнительную прокладку 6 Г-образного сечения, посредством которой достигается герметичность упорного вращающегося чугунного кольца 5, а между торцом патрона сальника 8 и торцом 14 крыльчатки 12 зазор 11 выполнен в пределах от 0,7 до 1,3 мм для предотвращения передачи тепла от сальника 7 к крыльчатке 12.

Работает устройство следующим образом. При работе насоса жидкость попадает в зону пары трения "кольцо по кольцу", одно из которых неподвижное графитовое 4, второе кольцо упорное вращающееся чугунное 5, для повышенного отвода тепла от пары трения в упорном чугунном кольце 5 изготовлена канавка 13 прямоугольного сечения, глубина которой лежит в пределах от 2 до 3% от ширины кольца. За счет канавки 13 увеличивается площадь соприкосновения жидкости с чугунным кольцом 5, что является основным фактором теплоотвода от пары трения "кольцо по кольцу". Для увеличения скорости перемешивания жидкости в зоне сальника патронного типа на внешнем торце патрона 7 выполнен импеллер 8, содержащий шесть радиальных канавок прямоугольного сечения глубиной от 0,3 до 0,7 мм. Увеличение скорости перемешивания предотвращает застой жидкости, увеличивает теплоотвод от зон пары трения и приводит к снижению температурного режима. Между торцом патрона сальника 8 и торцом 14 крыльчатки 12 выполнен зазор 11 в пределах от 0,7 до 1,3 мм, который позволяет предотвратить передачу тепла от сальника 7 к крыльчатке 12, что в свою очередь позволяет использование крыльчатки различной конструкции и различных материалов, т.к. она не связана с сальником. Сальник патронного типа при монтаже в корпусе водяного насоса устанавливается узловым способом, т.е. в сборе. При установке сальника происходит запрессовка одновременно по наружному диаметру резинового элемента 1 и по внутреннему диаметру патрона 7. Для исключения поводок колец пар трения 4, 5 при работе насоса используется их упругая установка без применения штифтов. Упругая установка колец пары трения осуществляется с определенным натягом и предотвращает проворачивание колец при работе.

Формула изобретения

1. Сальник патронного типа для водяного насоса, состоящий из упругого резинового элемента, наружного металлического армирующего кольца, внутреннего металлического армирующего кольца, конической пружины, уплотнительной прокладки неподвижного графитового кольца, отличающийся тем, что сальник снабжен металлическим патроном с возможностью установки узловым способом, содержащим кольцо-фиксатор, вращающееся упорное кольцо, выполненное с канавкой, установленное через уплотнительную прокладку, а между внешним торцом металлического патрона сальника, содержащим импеллер, и торцом крыльчатки выполнен зазор.

2. Сальник патронного типа для водяного насоса по п.1, отличающийся тем, что канавка во вращающемся упорном кольце имеет прямоугольное сечение глубиной в пределах 2-3% от ширины кольца.

3. Сальник патронного типа для водяного насоса по п.1, отличающийся тем, что импеллер, расположенный на внешнем торце металлического патрона, содержит шесть радиальных канавок прямоугольного сечения, глубина которых лежит в пределах 0,3-0,7 мм.

4. Сальник патронного типа для водяного насоса по п.1, отличающийся тем, что зазор между торцом патрона сальника и торцом крыльчатки выполнен в пределах 0,7-1,3 мм.

РИСУНКИ

Th5A - Переиздание описания изобретения к патенту Российской Федерации

Причина переиздания: Коррекция графических материалов

Извещение опубликовано: 10.06.2007        БИ: 16/2007

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 27.02.2008

Извещение опубликовано: 27.02.2008        БИ: 06/2008

www.findpatent.ru

Сальники насосов с водяным уплотнением

    Простейшая конструкция сальника с мягкой набивкой дана на рис. 4.16. Имеющаяся в металле корпуса / цилиндрическая выточка заполняется кольцами шнура 2 из мяг-, кого промасленного материала (хлопчатника, неньки, асбеста). Нажатием гаек, навертываемых на болты 3, втулка 4 сальника плотно загоняется в выточку и, раздавая мягкую набивку в стороны, уплотняет вал. Вследствие трения вала о набивку при работе насоса выделяется некоторое количество теплоты. Для отвода ее необходимо, чтобы сальник пропускал небольшое количество жидкости, удаляемой в канализацию. Со стороны всасывания часто применяют сальники с водяным уплотнением (рис. 4.17). [c.140]     При подготовке к пуску насоса необходимо закрыть задвижку на напорной линии и проверить, закрыты ли краны манометра и вакуумметра. Затем необходимо проверить сальниковые уплотнения, смазать их и, наконец, проверить наличие масла в подшипниках насоса и двигателя. Если сальники имеют гидроуплотнение, а подшипники — водяное охлаждение, то следует установить нормальную циркуляцию жидкости через эти узлы. [c.78]

    Сальниковое уплотнение не может быть герметичным необходим пропуск жидкости, достаточной для отвода тепла, возникающего при трении. Потребляемая насосом мощность быстро увеличивается при затяжке сальника. Число колец набивки для водяных насосов принимается равным 4—5. При давлении на сальниковую набивку выше 1 МН/м необходимо снизить давление на сальник насоса разгрузочным устройством (обычно полость сальника соединяют трубкой со всасывающим подводом колеса). [c.34]

    В насосах, подающих воду высокой температуры, может происходить сильный нагрев вала и деталей сальника. Это ведет к быстрому износу набивки и нарушению плотности сальника. В таких случаях сальник выполняют с охлаждающими полостями а, через которые пропускают воду с низкой температурой (рис. 4-17). Со стороны всасывания часто применяют сальники с водяным уплотнением (рис. 4-18). [c.102]

    Для перекачивания насыщенных растворов следует применять сальники с водяным уплотнением, так как регулирование механических уплотнений влечет за собой остановку насоса или устройства для создания циркуляции, а следовательно, и кристаллизатора. [c.162]

    При протекании сальника с водяным уплотнением можно приостановить утечку раствора, подтянув сальник без остановки мешалки или насоса. Необходимо, чтобы раствор в насосе не соприкасался с сальниковой набивкой, так как в противном случае в ней начнется кристаллизация. В результате набивка затвердевает и начнет задирать вал насоса. Желательно, чтобы в качестве уплотняющей жидкости использовалась чистая вода или, если это несовместимо с кристаллизуемым раствором, другой чистый растворитель или разбавленный (без твердой фазы) питающий раствор. Уплотняющая жидкость должна подаваться в сальник под давлением, чтобы предупредить попадание в него перекачиваемого раствора. [c.162]

    Весьма ответственным элементом насоса является сальник, уплотняющий отверстие, через которое проходит вал. При работе насоса во всасывающем патрубке создается иногда весьма глубокий вакуум. Отверстия 12 приводят к тому, что такой же вакуум образуется и у ступицы колеса со стороны вала. В связи с этим при недостаточной герметичности уплотнения вала во время работы насоса во всасывающий патрубок будет попадать воздух, что весьма опасно, так как это может приводить к срыву работы насоса ( срыв вакуума ). С целью повышения надежности уплотнения сальник снабжают водяным замком . Между сальниковой набивкой 13 (хлопчатобумажный жгут, проваренный в сале с графитной пудрой) вставлено металлическое распорное кольцо 14, к которому через отверстие 15 подводится вода под давлением из спиральной камеры (во многих насосах вода подводится через внешнюю трубку), исключает возможность проникновения воздуха в камеру рабочего [c.215]

    Водяное уплотнение сальников насоса. [c.56]

    Осевые усилия уравновешены при помощи уплотнения и отверстий в заднем диске колеса. Сальник с крышкой 7 уплотняется мягкой набивкой, разделенной кольцом 8 водяного уплотнения. Насос соединяется с электродвигателем при помоши упругой муфты 9. [c.206]

    Уплотнение вентилей осуществляется с помощью уплотнительного материала, применяемото при повышенной температуре. Набивки сальников насо сов и вентилей необходимо менять значительно чаще, чем это делается в насосах и арматуре в установках с водяным паром. Хорошо себя оправдали уплотнительные материалы марки Goetze Styl 340 [c.313]

    Далее в главе приведены характеристики различных конструкций циркуляционных насосов. В настоящую книгу был включен лишь небольшой раздел Сальники насосов с водяным уплотнением , поскольку эта тема до сих пор недостаточно освещена в литературе и представляет интерес при эксплуатации насосов любого типа, предназначенных для перекачки суспензий. — Прим. перевод. [c.161]

    Сальники насосов с водяным уплотнением [c.162]

    Поршни воздушных насосов часто выполняются без набивки или только с канавками, обычно с слегка пружинящими металлическими кольцами. В горизонтальных насосах целесообразно устраивать и заднюю направляющую в виду износа при нечистой воде. Сальники предусматриваются по фиг. 172, если в результате их неплотности во всасывающее пространство может проникнуть воздух иногда устраивается водяное уплотнение посредством специально сконструированного желоба или соединением уплотняющего пространства трубочкой с водопроводом. С большой тщательностью следует подходить к вопросу об уплотнении поршневого штока при прохождении его через клапанную решетку (фиг. 173—178), где для того же используется и сальник крышки. [c.346]

    Разработанная технология изготовления РТИ с неориентированным армированием по ТУ 2512.30.354.16-01 внедрена Инжиниринговой компанией "Инкомн-нефть" (г. Уфа). По данной технологии изготовлено бо гьшое количество запчастей. В перечень номенклатуры поставляемых изделий входили манжеты уплотнительные сальников станков-качалок, уплотнения штоков и поршни буровых насосов У8-6МА2, подпятники и радиальные опоры турбобуров ТПВ-105, уплотнительные детали торцовых уплотнений центробежных насосов ЦНС-180, поршни водяных насосов котельных установок и др. [c.188]

    В производстве бумаги и картона свежая вода используется на следующие цели на спрыски сгустителей на постоянное обновление части повторно используемой воды и роспуск полуфабрикатов (добавление к оборотной воде) на приготовление растворов химикатов спрыски очистительной аппаратуры и сетки, а также в сукномойках, отсечках и отсасывающих валах бу-маго- и картоноделательных машин на мытье полов и периодическую промывку емкостей и оборудования охлаждение подшипников и циркулирующего масла уплотнение сальников, создание водяных затворов в вакуум-насосных и отсасывающих камерах прессовых валов. Оборотная вода используется для роспуска полуфабрикатов и разбавления массы в смесительных насосах и регуляторах концентрации. [c.256]

    Хлопчатобумажная сухая набивка употребляется для уплотнения сальников и арматуры в водяных насосах и на водопроводах. [c.24]

    Обслуживание водяных и рассольных насосов. Пуск центробежных насосов производят при закрытой задвижке на нагнетательном трубопроводе, предварительно проверяя заполнение всасывающего трубопровода и насоса водой или рассолом. Задвижки на всасывающем трубопроводе должны быть открыты. Перед пуском насоса проверяют наличие масла в его подшипниках и в подшипниках электродвигателя, а затем провертывают насос от руки. Когда насос начнет создавать давление, постепенно открывают задвижку нагнетательной стороны, наблюдая при этом за напором по манометру насоса. Подшипники и сальник насоса не должны сильно йагреваться. Необходимо надежное уплотнение сальника, чтобы избежать подсасывания воздуха и утечки воды или рассола. [c.248]

    При компримировании контактного газа из него выпадает водяной конденсат, унесенный из концевых скрубберов. Он содержит углеводороды С5 (изоамилены, изопрен) в пределах растворимости. Сточные воды от уплотнения сальников насосов содержат углеводороды С5 (изопентан, изоамилены, изопрен) в количестве, определяемом их растворимостью. [c.163]

    Для уменьшения гидростатического давления перед сальником напорной стороны предусмотрено разгрузочное устройство. Вал насоса вращается в двух шарикоподшипниковых опорах. Смазка подшипников кольцевая, охлаждение водяное. Уплотнение вала в местах выхода его из крышек осуществляется при помощи мягкой эластичной набивки или механического торцового уплотнения. [c.140]

    При установке указанного оборудования на открытых площадках в районах с суровыми климатическими условиями не рекомендуется использование оборудования, имеющего водяное охлаждение сальников, цилиндров и других элементов. Сальниковые устройства с масляным уплотнением должны быть рассчитаны на работу при низких температурах наружного воздуха. Не рекомендуется также установка на открытых площадках насосов, требующих постоянного обслуживания, а также предназначенных для перекачки легко-застывающих жидкостей. [c.497]

    ЭГ63 Торцевые уплотнения в водяных насосах ГС, ГСГ Торцевые уплотнения в сальниках водяных насосов Вар319 Уплотнения в виде поршневых колец и втулок [c.153]

    В настоящее время для этих насосов разработаны одинарные торцевые уплотнения, которые заменяют сальники с мягкой набивкой. В этом случае не требуется применять разгрузки давления второй ступени, а также отпадает необходимость подводки уплотнительной жидкости и водяного охлаждения сальников. [c.219]

    Рабочее колесо 4 насоса чугунное (рис. 22), корпус 5, нижняя 15 и верхняя 13 крышки корпуса изготовляются из модифицированного чугуна, а вал 9 — из стали. Входной патрубок составляет одно целое с деталью 15 и направлен вертикально вниз (следовательно, насос имеет осевой вход воды на колесо) напорный патрубок расположен горизонтально под углом 90° к оси насоса. Спиральный корпус 5 снаружи имеет тавровые ребра и опирается двумя лапами на фундаментные плиты 14 и 1 шпонка 6, гайка 18 и шайба 3 служат для закрепления колеса 4 на валу 9. Колпак-обтекатель 2 служит для лучшего направления потока при входе на лопатки колеса, а защитные кольца 16 и 17 — для уплотнения. Сальник насоса состоит из корпуса 10, крышки 8 и набивки 7 И — сменная втулка для защиты вала от истирания набивкой сальника. Опорой вала служит подшипник 12 трения скольжения. Смазка подшипника водяная, вкладыши лигнофо-левые. [c.28]

    Корпус насоса литой, состоит из двух половин, соединяемых на болтах (см. план). На нижнем ободе рабочего колеса имеете -щелевое уплотнение 4 (зазор 0,8—1,2 мм). Рабочее колесо укреплено на нижнем фланце вала 5, который фиксируется направляющи подшипником 6 с лигнофолевыми вкладышами, работающим на водяной смазке (на участке подшипника на вал насажена защитна рубашка 7 из нержавеющей стали). Подшипник крепится к литой крышке насоса 8. Над подшипником расположен сальник 9. Верхний фланец вала спаривается с фланцем вала электродвигателя. В данном случае осевые усилия рабочего колеса не уравновешены что приводит к возникновению большой осевой нагрузки, определяемой разностью давлений на ободья рабочего колеса сверху и снизу. Это усилие воспринимается подшипниками электродвигателя. Насос крепится к фундаменту анкерными болтами с помощью лаге 10 и подушек 11. [c.222]

    Кроме того, при отсутствии водяного уплотнения рекомендуется в фонарь сальника насоса время от времени подавать консистентную смазку посредством штауферной масленки. [c.217]

    Затем необходимо проверить сальниковые уплотнения, смазать их и при гидравлическом уплотнении установить циркуляцию уплотняющей жидкости. Бели сальники имеют водяное охлаждение, то следует отрегулировать нормальное теченне воды через охлаждающие рубашки проверить наличие масла в подшипниках насоса и мотора включить электродвигатель или паровуго турбину. [c.242]

    Смазка подшипников скользящего типа — кольцевая, причем имеется возможность водяного охлаждения. Сальники снабжены кольцами водяного уплотнения. Насос соединяется с приводом упругой муфтой 8. Общий вид этого типа насоса показан на рис. 50, б. Производительность насосов этого типа от 216 до 5000 м 1час и более (в зависимости от диаметра) при напоре от 13 до 102 м. [c.133]

    Последовательность выявления причины аварии сальникового уплотнения такова. Если насос выключен пз-за сильной течи сальника, то прежде всего выясняют, наблюдалась JПI при работе насоса вибрация. После этого проверяют качество изготовления и материал сальниковой набивки, состояние защитных гильз, качество работ ио набивке сальников, а в горячих насосах — состояние систем уплотнения и водяного охлажде[1Ия сальников. При пропуске сальника со стороны нагнетания (для насосов с разгрузочной системой) дополнительно проверяют состояние разгрузочного трубопровода. Нри отсутствии явных дефектов производят разборку насоса, проверяют ротор на биение (в частности, 1Ю защитным гильзам), а также зазоры между грундбуксой, ( )онарем и нажимной втулкой сальника и защитной гильзой вала. [c.137]

    Корпус и крышка соединены при помощи шпилек 8, а герметичность соединения достигается сжатием кольцевой алюминиевой прокладки 15. Рабочее колесо 7 выполнено с двухсторонним подводом жидкости. Вал 4 вращается в двух шарикоподшипниковых опорах—радиальной 2 и радиально-упорной 11. Смазка подшипников—кольцевая. Корпуса 3 и 10 подшипников присоединены к корпусу и крышке и имеют водяные рубашки для охлаждения масляных камер. Уплотнение вала в корпусе и крышке достигается глубокими сальниками с набивкой из асбоалюминиевых колец 13. Набивка подтягивается нажимными втулками 5. Вал защищен от насоса гильзами 16 и 12, наллавленными снаружи слоем твердого сплава. Соединение валов насоса и привода прсизводится с помощью зубчатой муфты 1. [c.102]

    На нефтеперерабатывающих установках применяют также центробежные многоступенчатые горячие насосы типа КВН (КВН-55-70 КВН-55-120 и КВН-55-180) с приводом от паровой турбины конденсационного типа. Большинство насосов нормального ряда комплектуется с приводом на общей фундаментной плите. Валы нассса и привода соединяют муфтой. Валы насосов уплотняют, как обычными, сальниками с мягкой набивкой, так и торцовыми уплотнениями (особенно при перекачке сжиженных газов). При этом сальники нефтяных насосов снабжают системами масляного уплотнения и водяного охлаждения, что повышает надежность работы насоса и его герметичность. [c.72]

    Рабочее колесо, насаженное на вал со шпонкой, закреплено гайками 8 через защитные втулки б и 7. Для увеличения ресурса рао ты насоса кортгус и хргьшча" корпуса защищены сменными уплотнительными кольцами 5. Уплотнение вала насоса — два сальника с мягкой набивкой. Между кольцами набивки предусмотрены водяные камеры, к которым в насосах с подачей до 1600 м /ч включительно и насосе Д 12500-24 вода для гидравлического затвора подводится из спирального корпуса. В насосах с подачей от 2000 м /ч при давлении на всасывании ниже атмосферного к водяным камерам необходим подвод воды от постороннего источника. [c.590]

    Гидравлическая часть состоит из стального корпуса, в котором рас юложеЕ ы всасывающая и нагнетательная головки 2 и 4, всасываю щий и нагнетательный коллекторы 1 и 5, клапанов и сальников уплотнения, плунжеров. Плунжеры и са шники снабжены водяным схлаждением. В гидравлической части насоса имеется предохранительный клапан (на рис, 61 не показан), предохраняющий насос от превышения рабочего давления он соединен с нагнетательным коллектором. 1 В случае повышения давления в коллекторе (больше рабочего) предохранительный клапан открывается и композиция сбрасывается с нагнетательного во всасывающим коллектор. [c.207]

    Аммиачный центробежный насос (рис. 188) отличается от водяного центробежного насоса конструкцией сальника, обеспечивающего уплотнение вала. Сальник состоит из баббитовых колец, мягкой хлопчатобумажной набивки и фо1наря для смазки. Некоторые модели насосов имеют отделитель пара, который встроен в их корпус. [c.408]

    Применяется в качестве уплотнения сальников питательных насосов паровых котлов при давлении воды у сальника до 5 кес1см , с окружной скоростью вала до 18 м/сек, а также в водяных сальниках других механизмов при давлении воды у сальника до 40 кгс/см , с окружной скоростью вала до 15 м/сек. [c.266]

    Уплотнение штока 1 осуществляется металлической сальниковой набивкой 2. Всасывающие и нагнетательные клапаны пластинчатые, расположены радиально по бокам цилиндров. Цилиндры первой и второй ступеней — чугунные, третьей — стальное литье, четвертой — из поковки прокатной стали. С целью регулирования производительности компрессора и разгрузки его во время пуска цилиндр первой ступени имеет дополнительные вредные пространства. Все цилиндры имеют водяные рубашки 3. Коленчатый вал с насаженными на него маховиками лежит в двух коренных и одном выносном подшипниках скольжения. Компрессор имеет холодильники трубчатого типа, причем холодильники первой ступени расположены наверху компрессора холодильники остальных ступеней установлены рядом с компрессором. После каждого холодильника установлены масловла-гоотделители. Механизм движения смазывается машинным маслом от шестеренчатого насоса, сальник и цилиндры — компрессорным маслом от лубрикаторов. [c.173]

    Приводом компрессора является поршневая машина 4, рабочей средой которой является масло, подаваемое горизонтальным поршневым насосом 3. Компрессор вертикальный, причем блок цилиндров с помощью промежуточного фонаря подвешен к цилиндру привода. Дифференциальный поршень соединен с поршнем привода одним штоком 9. Чтобы на сальник компрессора не попадало масло, на штоке укреплена чашка, в которой масло собирается затем оно отводится. Ниже чашки на шток надета втулка из термосилида, предохраняющая шток от разрушения кислотой. Цилиндры компрессора внутри снабжены втулками из термосилида. Снаружи цилиндры имеют водяные охлаждающие рубашки. Пространство 10 соединено со всасывающим патрубком первой ступени, этим обеспечивается разгрузка сальника от давления и надежность уплотнения. [c.179]

    После проверки и смазки сальниковых уплотнений, а также пуока водяного охлаждения сальников и подшииникав, если таковое имеется, и проверки наличия смазочного мама в подшипниках насоса и электродвигателя последний В1ключают. [c.132]

    Набивка применяется в качестве уплотнения сальников питательных насосов паровых котлов с давлением до 5 кгс1см при окружной скорости вала насоса до 28 м1сек, а также для уплотнения водяных сальников и других механизмов с давлением до 40 кгс1см при окружной скорости вала до 15 м/сек. [c.56]

chem21.info

Как поменять сальники на насосе

Абразив, отсутствие воды, ухудшение контакта – вот основные причины выхода из строя сальника насосных станций. При появлении проблем с уплотнением потребуется подготовка нового изделия. Поэтому стоит рассмотреть, как поменять сальники в насосе, что для этого нужно.

Описание процедуры

Для замены сальника в насосе следует выполнить несколько достаточно простых действий:

  • отключить устройство от электропитания;
  • разобрать корпус оборудования;
  • снять поврежденный сальник;
  • осмотреть его, а также посадочное место;
  • поверхность вала требуется обработать, чтобы исключить наличие загрязнений;
  • новый сальник нужно взять руками из коробки и аккуратно установить, проверив центровку;
  • выполнить сборку элементов насосной станции в обратном порядке.

В насосах чаще всего используется два типа уплотнений:

  • стандартные;
  • пружинные.

Замена каждого варианта не имеет принципиальных отличий. Нужно действовать внимательно и осторожно, чтобы не повредить элементы насоса и сальниковые уплотнения.

Дельные советы

Также следует учесть:

  • перед тем, как поменять сальник в насосе, необходимо убедиться, что новое изделие подходит по параметрам;
  • направление прорезей, поскольку этот показатель зависит от движения вала;
  • поставить сальник нужно точно так же, как был размещен старый;
  • перед монтажом уплотнение или поверхность вала обязательно нужно смазать;
  • установка выполняется без применения тяжелых предметов, деформация не допускается;
  • уже использованное изделие нельзя применять повторно. 

Если учесть эти простые рекомендации, система будет работать стабильно и без сбоев. Приобрести сальники любого вида в Барнауле можно у компании «РТИ-Промэкспорт». Специалисты помогут правильно выбрать изделие, а также проконсультировать касательно его замены и установки.

www.rti-prom.ru

УЧЕБНИК1a

Задача любого уплотнения ясна из его названия - уплотнить конечно. Не дать среде просочиться из трубопровода, емкости, механизма. Вопрос - как.

В каталогах нередко обращает на себя внимание довольно обширный ассортимент материалов прокладок и набивок - ясно, что для конкретной задачи наилучшим образом подходит определенный материал. Попробуем слегка разобраться что тут к чему.

ПРОКЛАДКА

В идеале прокладки быть не должно. То есть идеальная прокладка - отсутствующая прокладка.

Парадокс? Ничуть нет! Более того - одно из фундаментальных правил теории решения изобретательских задач - ТРИЗ.

Идеальный элемент (устройство, механизм) это отсутствующий элемент, функция которого сохраняется (выполняется).

Применительно к уплотнениям поясню примером - в наиболее ответственных и нагруженых соединениях (например в ТНВД или форсунке, соединениях гидравлики высокого давления) прокладок нет, а уплотнение обеспечено точной подгонкой, притиркой сопрягаемых поверхностей. То есть прокладка как таковая отсутствует!

Но такое соединение довольно сложно изготовить и собрать (требуется высокая точность сопряжения) поэтому и придуманы прокладки. В принципе прокладка компенсирует неточность изготовления сопряжения - шероховатость, искажения геометрии, неточность состыковки, сборки. Все эти микродефекты компенсируются упругим материалом прокладки, который выжимаясь заполняет или выбирает все зазоры.

МАТЕРИАЛ

Выбор материала прокладок довольно широк, особенно сегодня с успешным развитием химии.

Наибольнее распространение получили паронит, клингерит (разновидность паронита) и резина. Эти материалы успешно стоят практически на всех средах, за исключением химических веществ. Кроме них применяются кожа, пробка, бумага и картон, пластмассы - капрон, капролон, и революционный тефлон(PTFE).

Последний быстро и широко вошел в обиход всех (не только судовых) механиков благодаря своим поистине уникальным свойствам - материал инертен практически ко всем средам (его применяют даже в искусственных суставах - он не отторгается организмом), обладает неплохой упругостью и мягкостью, отлично заполняет неровности и имеет рекордно низкий коэффициент трения. (Поэтому кроме прокладок материал используют в подшипниках и как антифрикционное покрытие). К сожалению не лишен он и недостатков - не выдерживает высоких температур (чуть выше 200 С), высоких давлений (слишком мягок) и трудно поддается склеиванию (инертен к клею!)

Возвращаясь к понятию идеальной прокладки, толщина прокладки должна быть по возможности минимальной. Чем тоньше прокладка, тем большее давление она способна выдержать. К идеальным прокладкам можно отнести, например, герметики - они идеально заполняют только неровности и шероховатость не создавая лишнего слоя материала между поверхностями.

Однако неоправданно тонкая прокладка не выполнит еще одной своей функции - компенсации температурных расширений, например на паропроводе. Чтобы уменьшить влияние этих деформаций на материал прокладки, конструкторы предлагают на фланцах подверженых частым температурным перепадам (например на паропроводах) устанавливать подрпужиненые болты - пружинные шайбы скомпенсируют изменение длины болтов, давление на материал прокладки не будет теперь меняться циклически, то сжимая, то ослабляя уплотнение. Прокладка прослужит дольше.

Одной из распространенных ошибок является применение паронитовых прокладок усиленных металлической сеткой на паропроводах. Являясь более прочными к разрушению по сравнению с обычным паронитом, такие прокладки таят в себе один "подводный камень". Пар или вода находит себе дорогу по микроканалам вдоль проволочек сетки, металл начинает ржаветь - и появляется протечка.

Этого недостатка лишены готовые прокладки, в которых армирующая сетка или перфорированая мембрана надежно "укутаны" в материал прокладки (паронит, резину, тефлон) и металл не соприкасается с агрессивной средой.

КОЛЬЦО

Несколько иначе, по сравнению с листовыми прокладками, работают резиновые кольца. Если листовая прокладка удерживает давление среды исключительно за счет выжимания ее в зазоре соединения, то резиновое кольцо устанавливается в выточке или канавке, и практически не выжимается, более того имеет небольшую свободу перемещения. Уплотнение обеспечивается давлением самой среды, которая прижимает кольцо к поверхностям детали. Чем выше давление - тем сильнее кольцо прижимается к поверхности и уплотняет соединение.

Именно благодаря этому резиновые кольца способны выдерживать давления в несколько сотен и даже тысяч атмосфер, в отличии от листовых прокладок.

Тем не менее имеются и листовые прокладки способные удержать достойные давления - металлические. Как правило это или мягкая сталь или медь или алюминий.

Такие прокладки незаменимы на паропроводах с высокими параметрами пара, сопряжениях втулок с крышками на дизелях, на топливопроводах с высокими температурами и давлениями.

Нужнопомнить (в принципе это - азбука) что медная прокладка должна быть отожженной - только тогда она будет мягкой. Неотожженная медь, как это не покажется странным, весьма твердый металл.

КОМПРОМИСС

Ну и конечно, как и в любой области, среди прокладок встречаются компромиссные решения. К таким относятся комбинированые прокладки, иначе называемые - навитые. В них совмещены два материала - металл (медь, алюминий, мягкая сталь) и прокладочный материал (паронит, тефлон). Две узкие (1-5 мм) сложеные вместе полоски материалов навиваются подобно бобине изоленты, образуя плоскую "улитку" . Такая прокладка сочетает в себе прочность металлической с плотностью и упругостью неметаллической. Эти прокладки отлично подходят для паропроводов.

САЛЬНИК КЛАПАНА

Работа сальника (уплотнения штока) клапана характеризуется малоподвижностью. С одной стороны это хорошо -уплотнение можно хорошенько затянуть, обеспечип его надежность. С другой стороны клапан иногда нужно открывать и закрывать, и зажатый до предела сальник отнюдь не облегчает эту задачу. Кроме того металл штока клапана довольно быстро истирается набивкой и корродирует.

Существует ряд набивок усиленых стальной или медной проволокой и даже набивки выполненые целиком из железной или алюминиевой фольги. Советую осторожно применять такие материалы, то есть не применять их там, где нормально стоит обычная набивка - металл быстро истирает шток клапана.

Вот некоторые хитрости про сальники:

Старайся положить в набивку побольше смазки, соответствующей среде конечно. Хороши графит для пара, можно с турбинным маслом, коллоидная медная смазка на горячих газов или топлива, просто солидол на воде. Не советуют применять дисульфитмолибденовую смазку - сера входящая в ее состав помимо отличных антифрикционных свойств обладает коррозионной агрессивностью, особенно при наличии воды. Стальной шток клапана быстро пострадает от такой смазки.

Паровая набивка прослужит долше если не давать ей "парить" - при малейшей протечке пара набивка быстро пересыхает и придется ее полностью менять.

При открытии больших паровых клапанов полезно зажим сальника слегка ослабить, а открыв, снова подтянуть.

При переборке клапана предназначеного для воды или масла (не слишком горячего) полезно вместо первого кольца набивки положить резиновое кольцо плотно охватывающее шток. С ним уплотнение простоит дольше.

САЛЬНИК НАСОСА

В отличие от сальника клапана сальник насоса работает на подвижном соединении - вал насоса вращается (центробежный, винтовой и т.д.) или штока насоса перемещаются (поршневой, золотниковый, мембранный)

Возвращаясь к правилу идеального устройства сформулированому в ТРИЗ можно определить что идеальный сальник - отсутствующий сальник. И такие насосы имеются - это насосы с магнитной муфтой. Передача усилия с приводного двигателя на вал насоса осуществляется специальной муфтой с постоянными магнитами закрепленными на стакане, охватывающем цилиндрический корпус в котором вращается якорь муфты соединенный с собственнонасосом. Таким образом вал не проходит внутрь корпуса насоса, он как бы разрезан пополам, стало быть уплотнения нет!

Но это исключение из правил.

Набивка для насосов определяется двумя основными параметрами - скоростью вала и температурой. Конечно, имеет значение и перекачиваемая среда. Большинство набивок выполняется из тех-же материалов что и набивки для клапанов. Это минеральное волокно или стекловолокно (раньше широко применялся асбест), пенька, хлопковые волокна, тефлон. Шнур пропитывается смазками, графитом или тефлоновой эмульсией в зависимости от материала.

На плунжерных масляных насосах хорошо работает "шевронная" резинотканевая набивка. Такая набивка имеет свойство самоуплотнения под действием давления масла - работает подобно манжете. Именно такие уплотнения стоят в плунжерах рулевых машин.

Отличные результаты дают механические сальники. Существует множество их разновидностей, использующих единый принцип - уплотнение осуществляется двумя точно притертыми плоскими поверхностями уплотнительных колец. Вариации на эту тему включают в себя применение различных конструкций прижимных пружин, корпусов, комбинаций резиновых колец или манжет, материалов колец.

Достоинство механических уплотнений - их надежность, длинный срок службы, мизерные протечки, они не требуют периодического обслуживания. Однако и механические сальники не лишены недостатков. Главный из них - для установки или замены сальника требуется разобщать насос и привод - сальник устанавливается только "надеванием" на вал (в то время как набивку можно установить прямо на месте).

В последнее время производители предлагают разъемные механические сальники, в которых все детали разрезаны пополам и также монтируются на месте. Конечно надежность такого "компромисного" варианта будет заметно ниже.

Кроме этого механический сальник весьма чуствителен к абразивным частицам (песок, ржавчина, шлам), при перекачке воды, особенно горячей, подвержен накипеобразованию.

Механическое уплотнение требует тщательной установки, особенно центровкив плоскости - малейший перекос сведет на нет все его достоинства. В некоторых моделях под уплотнительным кольцом ставят так называемое опорное кольцо со сферическим сопряжением. Таким образом удается скомпенсировать небольшой перекос связаный как правило с неточностью деталей корпусов насоса.

Механическое уплотнение чутко реагирует на осевые смещения вала насоса - например при тепловом расширении. Эту проблему производители также пытаются решить примененим специальных подпружиненных конструкций сальников.

Кроме этого мехсальник плохо переносит вибрацию.

Главные условия для хорошей работы механического сальника - это аккуратная установка. Следует очень тщательно очищать гнездо под кольцо и сажать его плотно, до упора на дно гнезда, чтобы исключить малейший перекос. Не следует также пережимать сальник, устанавливать его в точном соответствии с инструкцией. Пережатый сальник будет плохо смазываться, перегреваться и истираться, и быстро выйдет из строя.

Кроме этого необходимо знать, что сальники с одиночной пружиной надевающейся на вал (Crane) различаются по направлению вращения - правые и левые. Правило тут простое - пружина при вращении должна "заворачиваться" силами действующими на сальник, "скручиваться", а не наоборот. В общем то большинство премудростей как правило описано в инструкции к сальнику - не поленитесь прочитать ее!

Почему течет сальник?

Общеизветными и безусловными причинами течи сальниковых набивок насосов является износ, во первых самой набивки, во вторых поверхности вала, по которой она работает. Однако хорошо известно, что в то время, когда на одном насосе набивка работает месяцами, рядом, на таком же ее приходится менять через неделю. В чем же дело? Фирмы занимающиеся выпуском уплотнительных материалов занимаются довольно интенсивными исследованиями на эту тему. Причины недолговечности набивок, найденые ими довольно очевидны.

Итак, почему же он течет:

Геометрия.Геометрические размеры вала (втулки) по которому работает набивка весьма существенны. Малейшее, в сотые миллиметра, отклонение от округлой формы - овальность, смещение центра, заметно снизят срок службы сальника. Действительно, тогда набивка или будет постоянно вибрировать, сжимаясь-разжимаясь (на малых скоростях), или при больших скоростях вращения вала, просто не будет успевать сжиматься, и между валом и материалом набивки образуется вращающаяся полость, которой вполне достаточно для протечки жидкости. Не менее важна геометрия не только самого вала или втулки, но и геометрия, например, рабочего колеса и корпуса центробежного насоса. Почему? Потому что при нарушеной или неудачной геометрии этих элементов насоса возникают переменные силы, которые вызывают вибрацию и дисбаланс. Если, например, патрубок входа жидкости в центробежный насос будет смещен от центра колеса, то возникнут переменные гидродинамические силы, которые станут "раскачивать" крылатку, а вместе с нею и вал.

Дисбаланс и вибрация.Теперь представьте, что вал на просто вращается вокруг своей центральной оси, но и сама ось вращения либо совершает циклическое вращение вокруг центра тяжести (дисбаланс) либо перемещается линейно, "дрожит" в такт вращению, вибрирует. Эффект от такого поведения вала тот же, что и от нарушения геометрии - циклическая работа материала набивки и появление полости. Вибрации и дисбалансу больше подвержены насосы с "консольным" валом, заканчивающимся собственно крылаткой. Более жесткие насосы с двухопорными валами (где подшипники находятся с обоих сторон крылатки) более устойчивы к этой болезни.

Кстати, состояние сальника при внимательном наблюдении и статистике может быть хорошим диагностическим показателем самого насоса. Если сальник все чаще приходится перенабивать, одной из причин может быть износ подшипниковых втулок скольжения и уплотнительных колец насоса (они тоже играют удерживающую, "центрирующую" роль при работе насоса).

ТемператураДа да - элементарные температурные расширения. Насос пущен в работу, набивка нагрелась, ее "расперло" в тесной камере, давление контакта с валом выросло, износ набивки увеличился. Причем процесс этот неустойчив как ядерная реакция - чем больше греется сальник тем больше он расширяется тем меньше протечка (охлаждение, смазка), тем больше трение, тем больше нагрев .... Найти точку "баланса" бывает довольно хлопотно. Но вот она найдена. Теперь вы остановили насос и набивка остыв "села", сжалась, - появилась заметная протечка. Сальник приходится поджимать. Пуск - нужно отпускать. Вот почему чаще сальники текут на циклически используемых насосах - например, пожарных. Против этой болезни имеется одно лекарство - нажим втулки сальника нужно сделать "упругим", не жестким. Для этого применяются болты с нажимными пружинами, обычными, (если достаточно места) или пружинными шайбами. Производители набивок ищут материалы и их комбинации чтобы заставить саму набивку "пружинить", сжиматься и расправляться подобно резине, но, конечно, идеального материала нет.

Изнутри или снаружи?Бывает так - поджимаешь сальник поджимаешь - а толку никакого, перегревается, горит, но - течет. Присмотритесь повнимательнее - откуда бежит вода. Если по зазору вала (между валом и набивкой) - причина в изношеной набивке или втулке. Но если протечка по наружной поверхности нажимной втулки (то есть не "по валу" а "по корпусу") - здесь налицо ошибка в выборе размера набивки, ее сечения - оно слишком мало. Набивка выжимается до предела но не прижимается к стенке сальниковой камеры с достаточной плотностью - имеется протечка. Кроме правильного подбора размера набивки можно применить маленькую хитрость - перед установкой на каждое кольцо по наружной его поверхности нанесите немного жидкой прокладки, любого герметика, лучше нетвердеющего или просто силикона.

Почему сальник "фонтанирует"?Прежде всего, потому что течет. Однако, новый исправный набивной сальник должен иметь небольшую протечку - для смазки и охлаждения. При этом, если в одном сальнике протечка аккуратно стекает в специальную сборную "чашечку", то из другого жидкость мелким веером или туманом разлетается вокруг загрязняя пространство (топливо) и вызывая быструю коррозию частей насоса (забортная вода). Так в чем же дело? Присмотритесь к конструкции сальника. В нажимной втулке (буксе) сбоку как правило имеется небольшое "окошко" - его задача выпустить протечки сальника аккуратными каплями на чашку. Прежде всего это окошко должно быть чистым, не забитым старой набивкой и смазкой. Если насос горизонтальный - это окошко всегда должно "смотреть" вниз. Иначе сальник вероятнее всего будет "фонтанировать" Идем дальше - вода просочившаяся в зазор движется по валу и выйдя на "свободу" (где заканчивается набивка) отрывается от его поверхности центробежной силой и попадает на поверхность буксы сальника (нажимной втулки). Здесь вода продолжает по инерции круговое вращение и если поверхность буксы скошена наружу, может не тихо стечь в сборник, а вырваться в виде брызг. На внутренней поверхности многих букс (особенно на больших насосах) имеется специальная каплесборная канавка с упомянутым отводным "окошком".

Сальниковые "хитрости".Проектировщики насосов применяют в конструкциях сальников некоторые приемы не часто удосуживаясь объяснением для чего это сделано именно так и как это должно работать. Например, многие видели сальники с набивкой "разбитой" на две части металлической вставкой, образующей между частями полость, куда подается жидкость со стороны нагнетания (!) то есть под рабочим давлением. На первый взгляд - абсурд! Зачем "обходить" два-три кольца набивки оставляя в работе только наружную ее часть. Причем на подводящей трубке часто стоит клапан - закрывать его, открывать? Такая уловка - своего рода "защита" сальника от сухой работы. При работе насоса с вакуумом на всасывании (а сальники как правило стоят на всасывающей стороне насоса) сальник не получает жидкости, а наоборот подсасывает воздух, начинает работать "насухую", перегревается, твердеет (теряет эластичность) и даже горит. Насос при этом тоже чувствует себя "не очень" - с подсосом воздуха теряется вакуум (что особенно болезненно на опреснителях воды), появляется капитация и эррозия. Подводя небольшую порцию воды в сальник со стороны нагнетания от всех этих неприятностей удается избавиться. Вот вам и правило - на всасывании вакуум - подавайте воду в сальник, если насос работает с подпором - ее можно и даже лучше закрыть - вода все равно поступит в сальник и при меньшем давлении, что для его работы и лучше. Хотя есть и тут одна хитрость. Даже при работе с подпором давление на всасывании всегда заметно падает (сопротивление фильтров, трубопроводов, клапанов). Вы отрегулировали сальник на рабочем давлении (работающем насосом) - все в порядке, протечка капельная, сальник не греется. Теперь остановим насос - давление (подпор) вырос. Часто незначительно - на 1-2 килограмма, но и этого бывает достаточно чтобы сальник потек. Здесь "подпорная" трубка тоже выручит - она все ставит на свои места. Насос в работе - давление на сальник повышеное, протечка (а это, напомним, смазка и охлаждение) регулируется соответственно. Насос остановлен - давление упало, протечка не увеличивается, а то и вовсе прекращается.

НАБИВКА САЛЬНИКОВ - МАЛЕНЬКИЕ ХИТРОСТИ

Чтобы набивка сальника служила дольше можно применить некоторые испытаные или новые приемы:

В сальник клапана работающего на воде, масле или топливе с невысокими температурами перед укладкой обычной набивки положите резиновое кольцо подходящего размера. Набивка простоит заметно дольше.

Тефлон - очень хороший уплотняющий материал. Он обладает низким трением (а значит не изнашивается шток или вал, пластичен, слои его хорошо прилегают, "прилипают" друг к другу. Однако есть и недостатки. Не слишком высокая предельная температура - около 210 С, низкая эластичность, то есть форму после снятия давления материал не восстанавливает, не "пружинит" подобно резине. Пластичность тоже оборачивается недостатком - материал выдавливается в незначительные зазоры. Как же быть? Использовать комбинацию - кольцо набивки - тефлоновый шнур - кольцо набивки. Кольца набивки служат как бы замком, "плотиной" проотив продавливания тефлона через зазоры между сальниковой камерой и валом. А сам тефлоновый шнур можно даже не резать на кольца, а просто намотать на вал спиралью - под давлением буксы сальника эта спираль выдавится в нужную форму.

И напоследок несколько советов "от дедушки"

Один старинный рецепт- набивка для сальника парового клапана которая даст фору любой современной. Называется она "пушенка" и выполняется так:

необходимо распушить волокно набивки (минеральной или асбестовой, если она у вас еще используется) в мелкую крошку и смешать в равной пропорции с порошком графита. В сальниковую камеру уложить два-три паронитовых кольца (можно использовать и тефлоновые, если температура среды не больше 200 С) плотно охватывающих шток, засыпать "пушенку", сверху положить кольцо и обжать. После первого обжимания досыпать "пушенки" положить еще два кольца и обжать.

 

Кстати, вот вам пример "буржуазной" предприимчивости. Вот как выглядит эта самая, "дедушкина пушенка" в исполнении фирмы Chestertonспециализирующейся на уплотнениях и сальниках.

Все новое - хорошо переделаное старое.

Это утверждение отлично подходит к описанию инновационной технологии уплотнения валов насосови клапанов, предложеной компанией Chesterton. Суть идеи состоит в том, чтобы заменить обычные кольца набивки сальников специальной уплотняющей массой, закачиваемой в полость сальника при помощи специального насоса.

Поэтому утверждение фирмы о "революционности" метода несколько преувеличены. Хотя технология внедрения набивочной массы в камеру сальника и применяемые материалы претерпели изменения - появился специальный насос для вдавливания массы в полость сальника, да и сама масса упаковывается в удобные картриджи.

прокладку на фланец паровой магистрали смазывайте тонким слоем графита, сухим или разведенным на воде (но не на масле!) - при следующей разборке это облегчит удаление старой прокладки (она не "прикипит" к металлу). А вот масло приклеит прокладку к поверхности накрепко.

а вот "моликотом" увлекаться не следует. Не забывайте что это - коррозионно агрессивная смазка (дисульфат молибден содержит серу), поэтому применять ее на простых сталях (нелегированых) - чревато ржавлением поверхностей. Это смазка для нержавеющих сталей.

ААМ 2003

studfiles.net

Ремонт помпы (насоса охлаждающей жидкости) отечественных машин.

При эксплуатации любого автомобиля, наступает момент, когда выходит из строя помпа (насос охлаждающей жидкости), у которой как правило может быть всего две основных неисправности: износ подшипников, или износ сальника. Как разобрать, отремонтировать и собрать помпу классических отечественных автомобилей, которых до сих пор в странах СНГ ездит огромное количество, мы и рассмотрим в этой статье. И когда водитель новичок научится ремонтировать отечественную помпу, то для него не составит труда восстановить и помпу от иномарки, ведь принцип работы помпы и её ремонта одинаковый, только конструкция может немного отличаться.

Устройство помпы классических Жигулей.Прежде чем начинать разбирать и ремонтировать насос охлаждающей жидкости (помпу), для начала полезно ознакомиться с её конструкцией. Помпа классических (заднеприводных) Жигулей показана на рисунке 1 и имеет корпус 1 и крышку 4. На большинстве насосов применяют специальные двухрядные подшипники, внутренней обоймой которого служит сам вал насоса (крышка с таким подшипником поставляется под номером 2101- 1307045).

Но в продаже встречаются запасные части, то есть крышки для жигулёвской помпы под номером 2101-1807020. В этих крышках установлены два обычных двеститретьих (№203 — 17х40х12) подшипника.

Устройство помпы переднеприводных машин Ваз 2108 - 09.А на переднеприводных отечественных машинах (ВАЗ 2108 — 09) крышку помпы инженеры превратили в корпус насоса, который монтируется к блоку двигателя. Такая помпа показана на рисунке 2.

Устройство сальника насоса можно подробно рассмотреть на рисунке 3. И как я уже говорил, основных неисправностей помпы всего две — износ сальника и от этого подтекание охлаждающей жидкости и износ подшипника (или подшипников) вала.

Любой водитель естественно задавался вопросом — как отсрочить ремонт помпы? Долговечность насоса, а точнее скорость износа его сальника и подшипника, напрямую зависит от натяжения ремня привода вала насоса. И натяжение ремня естественно должно быть таким, какое рекомендует завод. Вообще натяжение ремня точно контролируется с помощью специального приспособления, о котором можно почитать вот тут.

Но таких приспособ у многих нет, значит нужно использовать при проверке натяжения ремня хотя бы обычный бизмен (стрелочные весы с крючком). На классических Жигулях натяжку клинового ремня проверяют так, что бы в середине (между шкивами насоса и генератора) ремня, его прогиб от усилия в 10 кгс составил 10 — 15 мм.

Для долговечности подшипников всё же лучше, если ремень натянуть немного слабее, но при установке нового ремня, он впоследствии немного вытянется и начнёт пробуксовывать на шкивах. Пробуксовка будет происходить чаще всего при включении фар, так как увеличится нагрузка на генератор. И по мере вытягивания нового ремня, его надо будет подтянуть.

От пробуксовки ухудшится работа генератора и его охлаждение, но главное это то, что быстро износится (сгорит) сам ремень и износятся шкивы. Поэтому пробуксовка от недотягивания ремня до предписанного заводом значения (находим его в мануале вашего двигателя), так же вредна как и перенатяжение ремня.

Ещё серьёзнее нужно относится к правильному моменту натяжки зубчатого ремня переднеприводных отечественных машин (ВАЗ 2108-09, Ока, Таврия) и иномарок. Так как проскальзывание ремня относительно зубьев шкивов (от недостаточной натяжки ремня) приведёт к серьёзным неприятностям (встреча клапанов с поршнями). В итоге, от банальной недотяжки ремня, можно попасть на дорогой ремонт двигателя или его головки цилиндров.

Вообще, раньше до появления у нас приспособлений для контроля натяжки зубчатого ремня (о которых ссылка выше в тексте) многие ремонтники считали нормальным натяжку, если в середине (между шкивами) зубчатый ремень можно закрутить на 90 градусов усилием пальцев (примерно 1,5 — 2 кгс), давящих на кромки ремня. Но чтобы на деле добиться точного усилия пальцев в 1,5 — 2 кгс — это сделать не так просто, особенно новичкам, и требует хорошего опыта.

И начинающим водителям, решившим обслуживать свою машину самостоятельно, всё же не советую доверять своим пальцам, или пальцам соседа по гаражу проверку натяжения ремня, а всё таки поискать в продаже и купить инструмент для контроля натяжки ремня. Кто не хочет искать и покупать такой инструмент, тогда гоните машину для замены ремня в сервис. Хотя бы будет с кого спросить, в случае недотяжки или перетяжки ремня. Хотя перетяжку ремня легко обнаружить, по характерному шуму из под капота, который начнёт появляться при увеличении оборотов двигателя.

Но даже если с правильным натяжением ремня привода насоса всё в порядке, то всё равно довольно часто, ещё до пробега в 100 000 км, подшипник помпы начинает шуметь или скрипеть, заявляя о недостатке смазки. При появлении скрипа, что бы продлить жизнь подшипника, опытные водители выворачивают стопорный винт 6 (см. рис 1), удерживающий подшипник, и вворачивают вместо этого винта прессмаслёнку, через которую шприцем подают консистентную смазку. Если скрип появился в дороге, то вывернув винт 6, в отверстие полезно залить с помощью медицинского шприца хотя бы обычного моторного масла.

Но наступает момент, когда даже добавление смазки уже не помогает и не устраняет шум подшипника. Это означает что его пора менять и об этом подробно ниже. При появлении капель или подтёков охлаждающей жидкости снаружи около валика помпы, это значит, что сальник изношен и его тоже пора менять. Кстати сальник может потечь не из-за того, что износился, а от того, что подшипник изношен и вал помпы имеет от этого повышенный люфт, и геометрия контакта манжеты сальника нарушается.

На рисунках видно, что проход охлаждающей жидкости происходит так, что она обходит подшипник снизу. А значит в некоторых случаях (когда подшипник не шумит, а просто помпа течёт) можно ограничиться только заменой изношенного сальника, не затрагивая подшипник (или подшипники если стоят два 203-х).

Но если вы разобрали помпу, чтобы заменить зашумевшие подшипники, то замените и сальник новым, ведь оставлять старый бессмысленно (стоит он копейки). Убедиться в износе подшипника (кроме повышенного шума) можно легко, если пошатать валик рукой — как правило повышенный люфт (более 0,13 мм) легко чувствуется. А при быстром прокручивании валика рукой, можно услышать хруст в подшипнике, означающий что и дорожки обойм и сами шарики изношены.

Процесс разрушения (питтинг) будет развиваться по нарастающей и может закончиться клином подшипника, и даже поломкой вала помпы, так как вал является внутренней обоймой, по которой прокатываются шарики, но это естественно не относится к насосам у которых два 203-х подшипника.

Кстати, при очень сильном износе подшипника, пожет случиться так, что крыльчатка насоса начнёт при вращении вала цеплять корпус (как на рисунке 1) или задевать за тело блока цилиндров двигателя (как на рис 2). При этом появляется неприятный шум, а если снять клиновой ремень на классике (естественно на переднеприводных машинах с зубчатым ремнём это делать нельзя) и вновь запустить двигатель, то исчезновение шума подтвердит задевание крыльчатки.

В любом случае, при выходе из строя сальника или подшипника, потребуется или ремонт помпы, или её замена. Купить помпу целиком на любую машину сейчас можно, но вот цена (особенно для иномарок) для некоторых водителей может показаться довольно высокой. И замена помпы целиком на отечественных машинах (и даже иномарках) особой сложности не представляет, даже для новичков, и это нет смысла описывать. А вот ремонт помпы, который позволит вам сэкономить определённую суму денег, стоит описать.

Замена подшипника помпы.

Снятие ступицы помпы универсальным съёмником

Рис. 7 а.Снятие ступицы помпы универсальным съёмником1 — крышка помпы, 2 — ступица помпы, 3 — лапка съёмника.

При замене подшипника насоса охлаждающей жидкости, придётся снять ступицу 8 (на рисунке 1) или демонтировать шкив 7 (см. рисунок 2). Естественно снимать эти детали нужно не с помощью молотка, а применив простейший съёмник, который пригодится и при других операциях, например как на рисунке 7 а.

 

 

 

Съёмник для снятия ступицы помпы.А для классических заднеприводных Жигулей, точнее для снятия ступицы помпы этих машин, можно сделать простой съёмник, как на рисунке 7б.

 

 

 

Выпрессовка подшипника с валом помпы.

Рис 8. Выпрессовка подшипника с валом помпы.1 — оправка, 2 — подшипник, 3 — крышка.

Перед выпрессовкой подшипника, нужно выкрутить стопорный винт наружной обоймы подшипника, и спрессовать крыльчатку с вала, и затем начинают выпрессовку подшипника вместе с валом и сальником, в сторону сальника (см. рисунок 8). Бывает полезно немного нагреть корпус помпы, или крышку, чтобы выпрессовка прошла намного легче.

Запрессовка сальника помпы.

Рис. 9. Запрессовка сальника помпы.1 — оправка, 2 — новый сальник, 3 — крышка помпы.

Подготовив новые детали, обратную сборку помпы начинают с запрессовки нового сальника (см. рисунок 9), не забывая при этом контролировать размер Б, показанный на рисунке 3. Для этого понадобится штангель или хотя бы линейка. Кстати, размер Б можно легко увидеть на старом сальнике, так как на нём со временем «отпечатывается»характерная метка (линия) по кругу. При запрессовке нового сальника, нужно действовать аккуратно, и не давить на графитовое кольцо, которое довольно хрупкое и его легко расколоть.

После запрессовки нового сальника (о замене сальника читаем ниже), можно запрессовывать новый подшипник с валом (см. рисунок 8). Перед запрессовкой подшипника с валом, важно правильно совместить отверстие (под стопорный винт)в наружной обойме подшипника, с отверстием стопорного винта в крышке (или корпусе), чтобы и отверстие и винт потом сошлись.

Оправка для запрессовки сальника и подшипника помпы.При запрессовке можно использовать приспособление (оправку), показанное на рисунке 6 (детали 4, 1, 2) и большие тиски, но лучше пресс. При запрессовке подшипника с валом, давить нужно только на наружную обойму, но как правило запрессовка подшипника большого усилия не требует. Конец запрессовки наступает, когда отверстие в наружной обойме и стопорный винт окажутся на одной линии (в обоих плоскостях). После этого стопорный винт вкручивают на резьбовой герметик, предотвращающий его выкручивание, и затягивают, чтобы он упёрся в отверстие в наружной обойме и зафиксировал подшипник на месте.

Кстати, если вы хотите намного продлить ресурс подшипников, то советую заказать токарю выточить стопорный винт с тоненьким отверстием внутри, а в расширенной головке этого винта, нарезать резьбу и вкрутить туда прессмаслёнку (бывают пресмаслёнки с резьбой всего 8 мм — М8) . Это позволит в любой момент (после определённого пробега) добавить в подшипник Литол.

Напрессовка на вал помпы ступицы и крыльчатки.

Рис.10. Напрессовка на вал помпы ступицы и крыльчатки.1 — опора, 2 — вал помпы, 3 — крышка помпы, 4 — крыльчатка, 5 — подкладка из дерева или фанеры.

При напрессовке с натягом в 0,06 — 0,1 мм ступицы 8 (см. рисунок 1), для напрессовки ступицы 8 служит опора 1, показанная на рисунке 10 , или шкива 7, показанного на рисунке 2, можно использовать слесарные тиски или пресс. При этом важно напрессовать детали на необходимую глубину, иначе плоскости вращения шкивов потом могут не совпадать, что приведёт к перекосу ремня.

Для напрессовки крыльчатки 4 на вал, нужно использовать опору 1 на переднем конце вала, и подкладку 5 из дерева, со стороны крыльчатки. Далее весь «бутерброд» сжимается с помощью тисков или пресса. Многие не используют опору 1, но при этом важно не перекосить детали в начале запрессовки, и не повредить передний торец вала помпы.

При напрессовке крыльчатки на вал, следует контролировать размер А. Ведь от этого размера зависит зазор между лопастями крыльчатки и стенками канала в блоке. Так же от размера А зависит прижимающая сила графитового кольца. Следует помнить, что уменьшение требуемого зазора в 0,9 — 1,3 мм между лопастями и стенками канала в блоке, может привести к касанию этих деталей, шуму и истиранию лопастей. А при увеличении требуемого зазора, ухудшится производительность помпы, и сильнее будет давление (сила прижима) на новое графитовое кольцо сальника, и его износ будет быстрее.

Кстати, часто бывает, что ступицу и напрессовывать на вал не нужно, так как нет необходимого натяга и ступица надевается на вал от руки. Такая посадка недопустима, и нет смысла надевать на вал такую ступицу (её провернёт при работе). Найти в продаже новую ступицу отдельно довольно сложно.

Чертёж новой ступицы насоса охлаждающей жидкости (помпы). Значит нужно выточить новую ступицу, согласно чертежу на рисунке 11, при этом следует уточнить диаметр вала помпы, чтобы после вытачивания новой ступицы, получить необходимый натяг. Но можно и не заказывать токарю новую ступицу, а просто нарастить наружный диаметр вала, или внутренний диаметр штатной ступицы гальваническим способом, который описан вот в этой статье.

 

 

 

 

Замена сальника помпы (насоса охлаждающей жидкости).

Стягивание крыльчатки помпы.

Рис 5. Стягивание крыльчатки помпы.1 — болт съёмника, 2 — крыльчатка, крышка помпы.

Часто бывает, что подшипники в порядке (не шумят), а помпа подтекает, значит заменить нужно только сальник. Для замены изношенного сальника, нужно спрессовать с вала крыльчатку и демонтировать крышку 4 (на рисунке 1), или корпус насоса 2 (на рисунке 2). Крыльчатку можно стянуть с вала при помощи съёмника (как показано на рисунке 5).

Съёмник крыльчатки жигулёвской помпы.Ведь для стягивания с вала Жигулёвской крыльчатки, ещё предусмотрена резьба М18х1,5, которая позволяет стянуть крыльчатку с вала при помощи резьбового съёмника, показанного на рисунке 4.

Можно кстати для этих целей использовать регулировочный болт с его втулкой от жигулёвского ГРМ (если конечно у вас имеется в наличии отдельно такой болт с втулкой). Перед тем, как снимать крыльчатку с вала, чтобы потом при напрессовке крыльчатки назад, не гадать на какую глубину её напрессовывать на вал ( и не гадать какой зазор должен быть между крыльчаткой и стенками канала блока) следует обязательно отметить острой чертилкой, на какую глубину была напрессована крыльчатка на заводе.

Устройство сальника помпы классических Жигулей

Рис. 3. Устройство сальника помпы классических Жигулей1 — корпус сальника, 2 — резиновая манжета, 3 — пружина, 4 — графитовое уплотнительное кольцо, Б- контролируемый при запрессовке размер, равный 11 мм.

После снятия крыльчатки, извлечь из помпы сальник целиком очень сложно, да это и не нужно. Можно просто отогнуть усики, которые удерживают внутренние детали сальника (см. рисунок 3) и извлечь эти детали. После извлечения деталей сальника, теперь оставшийся корпус 1 сальника можно вытащить с помощью плоскогубцев. Главное не испортить при этом посадочное место корпуса (в помпе или в её крышке) сальника. Естественно при этом он портится и выкидывается, а на его место устанавливается новый корпус с внутренними деталями (сальник).

Новый сальник аккуратно запрессовывается при помощи текстолитовой или деревянной оправки (её диаметр 40 мм), в центре которой имеется отверстие диаметром 16 — 16,5 мм. Ну а тем людям, кто думает в будущем заниматься ремонтом насосов профессионально (или у кого есть токарный станок), то будет полезным изготовить приспособление, показанное на рисунке 6 (см. выше). Детали 1, 2, 4 такого приспособления используют при запрессовке подшипника помпы (описано выше) , а детали 2, 3, 4 используются при запрессовке сальника.

Запрессовку как сальника, так и подшипника, следует выполнять не с помощью ударной техники (молотка), а при помощи пресса или хотя бы слесарных тисков. Так как удары будут губительными и для подшипника и для сальника и его графитового кольца.

После запрессовки на место нового сальника, естественно крыльчатка напрессовывается назад на своё место, до метки, которую вы надёюсь отметили на валу заранее, ещё перед снятием крыльчатки (об этом я упомянул выше).

Надеюсь, что данная статья по ремонту помпы (насоса охлаждающей жидкости) поможет новичкам самостоятельно заменить и сальник и подшипник, и сэкономить определённую сумму денег, которую уже не нужно будет тратить на новую помпу, успехов всем.

 

suvorov-castom.ru


.