Схема плавного включения лампы накаливания своими руками. Плавное включение светодиодных ламп 220в


Плавный розжиг светодиодов

Постоянно расширяющаяся сфера применения отлично работающих светодиодов раскрывает потребителям их дополнительные возможности. Одним из свойств, которые подчеркивают преимущества LED-светильников, является плавное включение светодиода, которое значительно расширяет их дизайнерские возможности.

Перспективы применения плавного розжига светодиодов

Необычные компоновки LED-светильников находят все большее применение в автомобилестроении, в дизайнерском оформлении зданий и помещений, создании непередаваемой атмосферы игры света на различных массовых мероприятиях. Учитывая возможность самостоятельно смонтировать плавное включение светодиода, в ближайшие годы можно ожидать еще большего их распространения. Даже простая схема для плавного розжига и выключения светодиодов значительно повышает комфортность их применения:

  • подсветка на приборах включается/выключается плавно, не ослепляя водителя в ночное время;
  • свет в салоне зажигается постепенно при открытии дверей;
  • плавное включение габаритного освещения значительно продлевает срок эксплуатации LED-светильников.

Примечательно, что устройство плавного розжига светодиодных ламп, при небольшой потребляемой мощности, предполагает лишь параллельный монтаж полярного конденсатора. Емкость конденсатора не должна быть больше 2200 МкФ, а его плюсовой вывод припаивается к анодному проводу светодиода. Отрицательный вывод – присоединяется к катодному проводу.

О полярности при пайке конденсатора следует помнить, иначе он может просто взорваться при розжиге.

Преимущества светодиодов на основе тиристоров

По сети гуляет анекдот, связанный с тем, что в ответ на вопрос, мигает ли лампочка на модеме, пользователь ответил, что свет мигающий, но это не лампочка, а тиристорный светодиод, чем и сбил с толку работников техподдержки провайдера, поскольку таких светодиодов просто не бывает.

Тиристор может выполнять только роль своеобразного ключа, управляющего мощной нагрузкой, а также переключателя. Определение тиристорный светодиод появилось после того, как производители светильников заменили дорогостоящий диодный мост, применявшийся для того, чтобы запустить LED. Создав прибор, состоящий из 2-х тиристоров, подключенных параллельно-встречным путем, удалось избавиться от диодного моста. Благодаря тому, что был использован такой своеобразный тиристорный светодиод - цена LED-светильников значительно снизилась и стала приемлемой для покупателя.

Свойства электронного ключа позволяют создать не только плавное включение светодиодов – тиристора применяются и в схемах, обеспечивающих постепенное включение/выключение даже простых ламп накаливания (специальные выключатели). Учитывая приемлемую цену LED-светильников без диодного моста, плавное включение и выключение светодиодов на тиристоре значительно расширяет область применения этого современного и эффективного средства подсветки и освещения.

Плавный розжиг и затухание возможно сделать самим

Так называемая вежливая подсветка в автомобиле именуется как плавный розжиг и затухание светодиодов или их платы. Она необходима с целью предотвращения случайного ослепления. Плавность включения делает световой источник визуально эффектным. В статье присутствует несколько вариантов схем, которые помогут обустроить плавную подсветку не только в салоне авто, но и внутри фар.

В Интернете присутствует изобилие схем плавного включения и затухания светодиодов (с напряжением от 12В), которые можно выполнить самостоятельно. У всех их есть определенные достоинства и изъяны, разные уровни сложности, а также различия в качестве электронной схемы.

Зачастую, в сооружении громоздких плат с дорогими деталями и прочим наполнением нет смысла. Стоит отметить, что плавное включение светодиода на одном транзисторе, а также его выключение - технически возможно. Лишь единственный транзистор с малой обвязкой будет достаточным для корректной и постепенной активации светодиодного кристалла. Далее представлена схема, которая проста в реализации и не требует дорогостоящих материалов. Включение и выключение в ней осуществляется посредством плюсового привода.

При начале подачи напряжения сквозь резистор R2 протекает ток и оптимизирует конденсатор С1. Стоит учесть, что напряжение в конденсаторе не способно мгновенно изменяться, а это играет на руку плавному открыванию транзистора VT1. Ток затвора который продолжает нарастать (вывод 1) проходит через резистор R1, а также взращивает положительный потенциал на самом стоке (выход 2) транзистора. Как результат наступает плавная активация светодиодов. При деактивации питания случается разрыв функционирующей электрической цепи по плюсу (управляющему). В свою очередь конденсатор постепенно разряжается, и отдает свою энергию R1 и R3 (резисторам). Разряд и его скорость определяет номинал резистора R3. С возрастанием сопротивления накопившаяся энергия пойдет на транзистор. Это означает, что процесс затухания будет протекать дольше. Чтобы можно было настроить время полноценного включения и деактивации напряжения, схему можно разнообразить резисторами R4, а также R5. Не смотря на это, для корректной работы данную схему лучше применять с резисторами R3 и R2 с небольшим рабочим номиналом.

Стоит учесть, что каждую из схем можно сложить самостоятельно даже на маленькой плате. Нужно детальнее рассмотреть элементы схемы. Основной составляющей управления считается n-канальный транзистор IRF540. Транзистором именуется прибор полупроводникового типа, который способен генерировать или усиливать колебания. Стоковое напряжение транзистора может достигать 23 А, а также 100В – напряжение сток-исток. Вместо указанного в схеме транзистора можно применять КП540 (аналог отечественный). За розжиг светодиодов и плавность их выключения отвечает сопротивление R2, значение которого не должно превышать 30–68 кОм. Стоит отметить, что резистор представляет собой составляющую электрических цепей пассивного типа, которой свойственен переменный или определенный показатель электрического сопротивления. Основная функция резистора состоит в линейном преобразовании напряжения в силу тока и наоборот, и т.д.

За плавное затухание (выключение) отвечает сопротивление R3 с рабочим диапазоном в 20–51 кОм. С целью задания напряжения затвора существует сопротивление R1, номинал которого 10 кОм. Емкость конденсатора С1 (минимальная) обязана достигать 220 мкФ с максимальным напряжением около 16 В. Если емкость увеличить до 470 мкФ, то возрастет и время на полное выключение и розжиг светодиода. В случае покупки конденсатора, работающего с большим напряжением, понадобится увеличение и самой платы.

Управление и его корректировка по «минусу»

Представленные выше схемы идеальны для внедрения их в устройство автомобиля. Стоит учесть, что сложность выполнения электрических схем заключается в замыкании некоторых контактов относительно полюса, а остальных по минусу (корпусной части или приводу).

Для управления приведенной схемой по минусу, необходимо осуществить ее доработку. К примеру, следует заменить транзистор на «p-канальный», для этого подойдет IRF9540N. Далее, вывод к минусу конденсатора нужно соединить с точкой троих резисторов, которая является общей для них. К истоку VT1 следует замкнуть плюсовой вывод. Подлежащая доработке схема будет иметь обратную полярность в своем питании, при этом плюсовой контакт при управлении сменится минусовым.

Ардуино: секреты работы с ним

Arduino – является инструментом для создания разных устройств электронного типа, разработан для непрофессиональных пользователей. Речь идет о проектировке робототехники, а также систем автоматики. Устройства, работающие на Arduino, могут принимать сигналы из разных датчиков и производить управление исполнительными приспособлениями.

Arduino представляет собой плату небольших размеров, оборудованную индивидуальной памятью и процессором, которые находят взаимодействие со средой их окружения. Данная особенность существенно отличает такое устройство от ПК, который не покидает рамок виртуального мира. Помимо этого, Arduino способен работать вместе с компьютером или в автономном (индивидуальном) режиме.

На плате устройства присутствуют несколько десятков контактов. Именно к ним можно осуществить подключение: датчиков, светодиодов, плат расширения, моторов, и т.д. В сам процессор стоит загрузить приложение для Ардуино или скетч, она способна принимать все показания, а также управлять устройствами, согласно заданного алгоритма. Стоит отметить, что выходы на плате Ардуино именуются Pin, поэтому после загрузки скетча станет ясно, как работать с таким инструментом.

Возможно ли плавное включение светодиода на ардуино? Для начала стоит применить упрощенный скетч плавный розжиг светодиодов. Яркость светодиодов будет изменена при помощи ШИМ. Для этого понадобятся следующие составляющие:

  1. Плата Arduino Uno;
  2. Светодиод;
  3. Плата-макет;
  4. Резистор на 220 Ом;
  5. Провода.

Стоит знать, что АnalogWrite (функция) используется с целью затухания и медленного розжига светодиода. Именно AnalogWrite применяет модуляцию широтно-импульсного типа (PWM). Она позволяет осуществлять активацию и деактивацию цифрового пина на большой скорости, нарабатывая процесс медленного затухания.

Чтобы подключить к Ардуино светодиод, необходимо соединить его более длинную ногу (анод) с цифровым пином №9, который расположен на плате, посредством резистора 220 Ом. Затем, более укороченную ногу светодиода (катод с отрицательным зарядом) стоит направить к земле.

led-svetodiody.ru

Схема плавного включения ламп накаливания (УПВЛ) 220в, 12в

Любой экономный хозяин дома или квартиры стремиться к тому, чтобы рационально пользоваться электрической энергией, так как цены на неё достаточно высокие. Так, например, при некорректном использовании обычной лампы накаливания она будет регулярно «перегорать». Поэтому для того чтобы она смогла прослужить вам намного дольше специалисты рекомендуют использовать такие устройства, как приборы плавного включения. Также можно самостоятельно сделать такой блок, используя определённую схему.

Принцип работы УПВЛ

При резком потоке электроэнергии лампа накаливания очень быстро изнашивается и вольфрамовая нить перегорает. Но если температурный режим нити и электрического тока будет примерно одинаковый, то процесс будет стабилизирован и лампа не перегорит. Для того чтобы источники света работали как положено, необходимо иметь специальный блок питания.

Благодаря специальному датчику нить будет накаляться до необходимой температуры, и уровень напряжения будет увеличиваться до точки, указанной пользователем. Например, до 176 Вольт. В этом случае блок питания поможет существенно увеличить срок работы лампы.

Устройство плавного включения ламп

Блок защиты имеет один недостаток — в помещении свет будет гореть значительно слабее.

В том случае, если напряжение будет 176 В, то уровень освещения снизится примерно на две трети. Поэтому специалисты рекомендуют приобретать мощные лампы, чтобы качество света было нормальным. В настоящее время существуют специальные блоки плавного включения (УПВЛ) ламп накаливания, которые отличаются различными параметрами мощности. Поэтому, прежде чем покупать блок, необходимо убедиться, сможет ли он выдержать большие скачки или перепады напряжения в электросети. Такое устройство обязательно должно иметь дополнительный запас, при этом будет вполне хватать того, чтобы напряжение в вашей электросети было больше потока скачков примерно процентов на 30.

Необходимо знать, что чем выше будет нормативный показатель, тем больше будут габариты блока питания. В настоящее время можно приобрести блок питания мощностью от 150 до 1000 Ватт.

Виды блоков питания и их характеристики

Сегодня существует множество различных устройств плавного включения ЛН. Самыми востребованными являются:

  • Блоки УПВС, представляющие собой базовые версии, которые имею достаточно невысокую стоимость, поэтому используются большинством потребителей. УПВЛ базовой версии
  • Блоки Гранит имеют высокое качество изготовления и обладают длительным сроком службы. Такое устройство очень простое в работе и установке. Устройство плавного включения Гранит
  • Блок Навигатор (Navigator) применяется не только для ЛК (ламп накаливания), но и для галогеновых. Это универсальное многофункциональное устройство достаточно небольшое по габаритам, поэтому не займёт много места. Устройство плавного включения Навигатор

Схемы

Для того чтобы правильно использовать блоки плавного включения ЛК необходимо использовать специальные электросхемы. Благодаря таким схемам можно легко понять, как работает данный прибор и устроен изнутри, а также как его необходимо эксплуатировать.

Схема плавного включения лампы накаливания

Обычно при подключении такого устройства специалисты пользуются наиболее простым и лёгким вариантом схемы. Иногда используют специальную схему с внедрением симистеров. Также, кроме блоков данного вида можно брать полевые транзисторы, которые работают аналогично приборам плавного включения.

Вторая схема плавного включения ламп накаливания

Также того чтобы можно было контролировать напряжение в приборе плавного включения можно использовать автоматические приборы.

Что собой представляет тиристорная схема

Тиристорную схему специалисты рекомендуют использовать для повторения. Состоит она из обычных элементов, которые можно найти в каждом доме. Такую схему можно легко сделать в домашних условиях своими руками.

Тиристорная схема плавного включения лампы

Цепь моста выпрямления (рис.VD1, VD2, VD3, VD4) использует лампочку (рис. EL1) как нагрузку и токоограничитель. Плечи выпрямителя оснащены тиристором (рис. VS1) и сдвигающейся цепью (рис. R1, R2 и C1). Также диодный мост устанавливается за счёт спецификации работы прибора тиристора.

После того как напряжение подаётся на схему, электроток начинает идти через спираль накала и поступает на мост, а затем посредством резистора осуществляется зарядка электролита. Когда достигается предел напряжения открытия тиристора, он начинает открываться и тогда через него проходит ток от лампочки. В результате этого вольфрамовая нить разогревается постепенно и плавно. Период ее разогрева будет зависеть от ёмкости находящегося в схеме устройства конденсатора и резистора.

Чем примечательна симисторная

Такая схема имеет меньшее количество деталей за счёт применения симистора (рис. VS1), который служит силовым ключом.

Симисторная схема плавного включенияламп

Такой элемент, как дроссель (рис. L1), который предназначен для удаления различных помех, появляющихся во время открытия силового ключа, разрешено убрать из общей цепи. (рис. R1)Резистор является ограничителем тока, который поступает на главный электрод (рис. VS1). Цепь, которая задаёт время, исполнена на резисторе (рис. R2) и ёмкости (рис. С1), питающимися посредством диода (рис. VD1). Данная схема работает также как и предыдущая. Когда конденсатор заряжается до уровня напряжения открытия симистора, он начинает открываться, а затем через него и лампочку поступает электрический ток.

Схема плавного включения ламп накаливания

На фотографии внизу мы можем увидеть симисторный регулятор. Такое устройство кроме регулировки мощности в нагрузке, также осуществляет плавное поступление электротока на лампочку, когда её включают.

Устройство плавного включения ламп накаливания

Схема работы блока на специализированной микросхеме

Микросхема типа кр1182пм1 была специально создана специалистами для построения различных фазовых регуляторов.

Схема плавного включения на специализированной микросхеме

В этом случае происходит так, что с помощью самой микросхемы происходит регулирование напряжения на источнике, который обладает мощностью до 150 ватт. А если понадобится управлять более сильной системой нагрузки и десятками осветительных приборов одновременно, то в управленческую цепь просто включается дополнительно силовой симистр. На рисунке внизу мы можем увидеть, как это происходит.

Схема плавного включения с силовым симистром

Применение блоков плавного включения не заканчивается только на обычных лампах, так как специалисты рекомендуют использовать их вместе с галогеновыми лампами, мощностью в 220 В.

Важно знать! С люминесцентными и LED лампами (светодиодными) такие блоки устанавливать нельзя. Это связано с тем, что здесь присутствует различная техника разработки схем, а также принцип действия и присутствие у каждого осветительного прибора своего источника размеренного нагрева для люминесцентных ламп или нет потребности в таком регулировании ламп LED.

Устройство плавного включения (УПВЛ) для ламп накаливания в 220в и 12в

На сегодняшний день производится большое количество различных моделей УПВЛ, которые отличаются между собой по функциям, стоимости и качеству. Устройство, которое продаётся в специализированных магазинах, подключается последовательно к источнику света на 220 В. Схему и внешний вид устройства мы можем увидеть на фотографии внизу.

Схема устройства плавного включения для ламп на 220 В

Если же мощность питания ламп 12 или 24 В, то прибор необходимо подключать перед понижающим трансформатором также последовательно к начальной первичной обмотке.

Прибор должен соответствовать нагрузке, которая будет подключаться с определённым запасом. Для этого надо подсчитать число светильников и их общую мощность.

Так как устройство имеет небольшие размеры, то УПВЛ можно разместить под люстрой, в подрозетнике или в коробке соединения.

Диммеры или светорегуляторы

Экономически выгодно и рационально использовать приборы, создающие плавное включение ламп, а также обеспечивающие процесс регулирования их степени яркости. Диммеры различных моделей могут:

  • Задавать программы работы осветительных приборов;
  • Плавно включать и выключать лампы;
  • Управляться пультом, голосовыми командами или хлопками.

Приобретая данное устройство необходимо сразу определиться с выбором, чтобы знать какие требуются функции, и не покупать дорогостоящий прибор за большие деньги.

Перед установкой диммера необходимо определиться со способом и местом управления осветительными приборами. Для этого надо будет смонтировать электропроводку соответствующего вида.

Схемы подключения могут быть различной степени сложности. В любом случае вначале необходимо отключить напряжение с определённого участка.

На рисунке мы показали самую простую схему подключения. Здесь вместо простого выключателя можно сделать светорегулятор.

Схема подключения диммера в разры питания лампы

Прибор подключается в разрыв L— провода с фазой, а не N — нулевого. Между нулевкой и диммером находится осветительный прибор. Соединение с ним выходит последовательным.

Рисунок (Б) представляет схему с выключателем. Процесс подключения остаётся таким же, но здесь прибавляется простой выключатель. Его обычно устанавливают возле двери в определённый разрыв между фазой и самим диммером. Возле кровати находится светорегулятор, который позволяет управлять освещением лёжа. Когда человек выходит из помещения, свет выключается, а когда входит обратно осуществляется пуск лампы с такой же степенью яркости.

Для того чтобы управлять люстрой или другим осветительным прибором можно взять два диммера, которые будут находиться в разных углах помещения (рис.А). Между собой два прибора подключаются посредством распределительной коробки.

Схема управления лампой накаливания: а — с двумя диммерами, б — с двумя проходными выключателями и диммером

Благодаря такой системе подключения можно регулировать степень яркости с различных мест независимо друг от друга, но проводов надо будет монтировать больше.

Проходные выключатели используются для включения ламп с различных мест в помещении (рис.Б). Также при этом надо включить диммер, в противном случае светильники не будут реагировать на выключатели.

Характеристики диммеров:

  • Диммер экономит электроэнергию всего лишь на 15%, а остальная часть используется регулятором.
  • Приборы имеют большую степень чувствительности к увеличению температуры. Поэтому их нельзя эксплуатировать при температуре выше 27°С.
  • Степень нагрузки не должна быть меньше 40 Вт, так как срок эксплуатации регулятора существенно снижается.
  • Диммеры необходимо использовать только для тех видов устройств, которые рекомендуются производителем и написаны в паспорте.

Видео: устройство УПВЛ

УПВЛ позволяют существенно увеличить срок эксплуатации галогенных ламп и ламп накаливания. Это небольшие и недорогие приборы, которые можно купить в любом магазине и установить самостоятельно, имея определённую схему и точно следуя инструкциям производителей.

Оцените статью: Поделитесь с друзьями!

tehznatok.com

Схема плавного включения лампы накаливания своими руками

В ходе непрекращающегося перегорания ламп накаливания, и в том числе на лестничной площадке было реализовано несколько схем защиты ламп накаливания в интернете. Их применение дало положительный результат – лампы приходится менять гораздо реже. Однако не все реализованные схемы устройств работали «как есть» - в процессе эксплуатации приходилось производить подбор оптимального набора элементов. Параллельно производился поиск других интересных схем. Как известно, плавное включение ламп накаливания увеличивает срок их службы и исключает броски тока и помехи в сети. В устройстве, которое реализует такой режим, удобно использовать мощные полевые переключательные транзисторы. Среди них можно выбрать высоковольтные, с рабочим напряжением на стоке не менее 300 В и сопротивлением канала не более 1 Ом.

Схема плавного включения лампы накаливания №1

Автор приводит две схемы плавного пуска ламп. Однако, здесь хочу предложить только схему с оптимальных режимом работы полевого транзистора, что позволяет его использовать без радиатора при мощности лампы до 250 Ватт. Но вы можете изучить и первую - которая проще тем, что включается в разрыв одного из проводов. Тут по окончании зарядки конденсатора напряжение на стоке составит примерно 4…4,5 В, а остальное напряжение сети будет падать на лампе. На транзисторе при этом будет выделяться мощность, пропорциональная току, потребляемому лампой накаливания. Поэтому при токе более 0,5 А (мощность лампы 100 Вт и больше) транзистор придется установить на радиатор. Для существенного уменьшения мощности, рассеиваемой на транзисторе, автомат необходимо собрать по схеме, приведенной далее.

Схема плавного включения лампы накаливания №2

Схема устройства, которое включается последовательно с лампой накаливания, приведена на рисунке. Полевой транзистор включен в диагональ диодного моста, поэтому на него поступает пульсирующее напряжение. В начальный момент транзистор закрыт и все напряжение падает на нем, поэтому лампа не горит. Через диод VD1 и резистор R1 начинается зарядка конденсатора С1. Напряжение на конденсаторе не превысит 9,1 В, потому что оно ограничено стабилитроном VD2. Когда напряжение на нем достигнет 9,1 В, транзистор начнет плавно открываться, ток будет возрастать, а напряжение на стоке уменьшаться. Это приведет к тому, что лампа начнет плавно зажигаться.

Но следует учесть, что лампа начнет зажигаться не сразу, а через некоторое время после замыкания контактов выключателя, пока напряжение на конденсаторе не достигнет указанного значения. Резистор R2 служит для разрядки конденсатора С1 после выключения лампы. Напряжение на стоке будет незначительным и при токе 1 А не превысит 0,85 В.При сборке устройства были использованы диоды 1N4007 из отработавших свое энергосберегающих ламп. Стабилитрон может быть любой маломощный с напряжением стабилизации 7...12 В.

Под рукой нашелся BZX55-C11. Конденсаторы — К50-35 или аналогичные импортные, резисторы — МЛТ, С2-33. Налаживание устройства сводится к подбору конденсатора для получения требуемого режима зажигания лампы. Я использовал конденсатор на 100 мкф – результатом стала пауза от момента включения до момента зажигания лампы в 2 секунды.

Немаловажным является отсутствие мерцания лампы, как это наблюдалось при реализации других схем.

Это устройство работает уже долгое время и лампы накаливания пока менять не пришлось.

Автор статьи и фото - Николай Кондратьев, г.Донецк. Украина. Источник

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Плавное включение и выключение светодиодов

В данной статье будет рассмотрено несколько вариантов схем реализации идеи плавного  включения и выключения светодиодов подсветки панели приборов, салонного света, а в некоторых случаях и более мощных потребителей – габаритов, ближнего света и им подобных. Если у вас панель приборов подсвечивается с помощью светодиодов, при включении габаритов подсветка приборов и кнопок на панели будет зажигаться плавно, что выглядит достаточно эффектно. То же можно сказать и про освещение салона, которое будет плавно загораться, и плавно же затухать после закрытия дверей автомобиля. В общем, неплохой такой вариант тюнинга  подсветки :).

Схема управления плавным включением и выключением нагрузки, управляемая плюсом.

Данную схему можно использовать для плавного включения светодиодной подсветки приборной панели автомобиля.

Эту схему можно использовать и для плавного розжига стандартных ламп накаливания со спиралями небольшой мощности. При этом транзистор необходимо разместить на радиаторе с площадью рассеивания около 50 кв. см.

Схема работает следующим образом.Управляющий сигнал поступает через диоды 1N4148 при подаче напряжения на «плюс» при включении габаритных огней и зажигания.При включении любого из них подается ток через резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 120 кОм начинает заряжаться конденсатор.Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540.Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы.При снятии управляющего напряжения транзистор КТ503 закрывается.Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм.После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен. При необходимости, изменить время розжига и затухания управляемого элемента (светодиоды или лампы) можно подбором номиналов сопротивлений и емкости конденсатора 220 мкФ.

При правильной сборке и исправных деталях этой схеме не нужны дополнительные настройки.

Вот вариант печатной платы для размещения деталей данной схемы:

Схема плавного включения и выключения светодиодов.

Данная схема позволяет плавно включать – выключать светодиоды, а также уменьшать яркость подсветки при включении габаритов. Последняя функция может быть полезна в случае чрезмерно яркой подсветки, когда в темноте подсветка приборов начинает слепить и отвлекать водителя.

В схеме используется транзистор KT827. Переменное сопротивление R2 служит для установки яркости свечения подсветки в режиме включенных габаритов.Подбором емкости конденсатора можно регулировать время загорания и угасания светодиодов.

Для того что бы реализовать функцию притухания подсветки при включении габаритов, нужно установить сдвоенный выключатель габаритов или использовать реле, которое бы срабатывало при включении габаритов и замыкало контакты выключателя.

Плавное выключение светодиодов.

Простейшая схема для плавного затухания светодиода VD1. Хорошо подойдет для реализации функции плавного угасания салонного света после закрытия дверей.

Диод VD2 подойдет почти любой, ток через него невелик. Полярность диода определяется в соответствии с рисунком.

 

Конденсатор C1 электролитический, большой емкости, емкость подбираем индивидуально. Чем больше емкость, тем дольше горит светодиод после отключения питания, но не стоит устанавливать конденсатор слишком большой емкости, так как  будут обгорать контакты концевиков из-за большой величины зарядного тока конденсатора. К тому же, чем больше емкость — тем массивнее сам конденсатор, могут возникнуть проблемы с его размещением.  Рекомендуемая емкость 2200 мкФ. При такой емкости подсветка затухает в течение 3-6 секунд. Конденсатор должен быть рассчитан на напряжение не менее 25В. ВАЖНО! При установке конденсатора соблюдайте полярность! При неправильной полярности подключения электролитический конденсатор может взорваться!

Оцените статью: Поделитесь с друзьями!

tuning-lada-2109.ru