Химические методы очистки сточных вод. Химические методы очистки сточных вод


Химические методы очистки

Нейтрализация является важным химическим способом общего процесса регуляции величин рН, доведения реакции сточной жидкости до нейтральной (рН 7). Для нейтрализации кислых вод используют как растворимые, так и слабо растворимые в воде реагенты. К первым относятся: известь, едкий натр, сода; ко вторым - оксид и гидроксид магния, карбонаты кальция и магния.

Осаждение ионов металлов. Как правило, кислые СВ, образовавшиеся в процессах обработки металлов, содержат ионы железа и ИТМ. В этих случаях нейтрализация сопровождается реакциями химического осаждения металлов в виде труднорастворимых гидроксидов. При нейтрализации кислых СВ реагенты расходуются как на снижение концентрации в них Н+- ионов, так и на образование гидроксидов тяжелых металлов.

Значения рН, соответствующих началу и окончанию осаждения гидроксидов тяжелых металлов в водных растворах приведены в табл.

Величины рН осаждения гидроксидов металлов

Катион

Начало осаждения

Полное осаждение

железо(2)

7,5

9,7

железо(3)

2,3

4,1

цинк(2)

6,4

8,0

хром(3)

4,9

6,8

никель(2)

7,7

9,5

алюминий(3)

4,0

5,2

кадмий(2)

8,2

9,7

свинец(2)

7,8

9,3

Электрохимический метод извлечения растворенных электролитов (примесей 4-Б группы по классификации Кульского) основан на использовании электродиализа и электроосмоса. Упрощенная схема установки для электрохимической очистки сточных вод представляет собой емкость, разделенную мембранными перегородками на три камеры (катодную, рабочую и анодную) с погруженными в крайние камеры электродами 1 и 2 (рис.).

Рис. Схема электрохимического извлечения растворенных электролитов

После заполнения ванны водой и включения постоянного тока наблюдается перенос ионов в крайние камеры (катионов – к катоду, а анионов - к аноду) и опреснения воды в средней камере.

При этом на катоде образуется свободный водород, на аноде - кислород, т.е. подкисление анодной жидкости и подщелачивание катодной.

Камеры являются проточными и соединяются последовательно. Для мембран используются химически и механически стойкие материалы: перхлорвиниловая ткань, микропористый винипласт. Материалом для катода служит нержавеющая сталь, для анода - магнетит.

Биохимические методы очистки сточных вод

Биологические методы очистки сточных вод заключаются в разложении и минерализации аэробным или анаэробным путем коллоидных и растворенных органических веществ, которые не могут быть изъяты механическим путем.

Городские сточные воды является благоприятной средой для жизнедеятельности различных групп микроорганизмов, потому что в них находятся все необходимые питательные вещества - белки, жиры, углеводы - и многочисленные неорганические соединения. Для нормальной жизнедеятельности клетки необходимы такие элементы: N, А1, Вг, V, Н, Fе, И, К, Со, О, Sі, Мn, Мg, Сu, S, Р, С, F, Zn. Все они есть в городских сточных водах.

Огромное количество микробов в городских сточных водах предопределяет постоянное разложение различных компонентов этих вод. Соответственно в сточных водах остаются соединения с небольшим энергетическим запасом. В результате жизнедеятельности микробов в сточную жидкость выделяются водород и другие соединения. Если водород не изымать из сточной жидкости, то реакция разложения закончится сама. Но в сточных водах есть акцептор водорода - кислород, источником поступления которого может быть диффузия его из атмосферы, фотосинтетическая деятельность водорослей и высшей водной растительности (биологические фильтры, биологические пруды), а также разложение нитратов, нитритов и сульфатов. В результате реакции кислорода с водородом образуется перекись водорода, которая в свою очередь восстанавливается до воды.

Процессы бактериальной деятельности непрерывно изменяют окислительно-восстановительный потенциал сточных вод. При восстановительных процессах на анаэробных очистных сооружениях окислительно-восстановительный потенциал падает, достигая отрицательных величин. На аэробных очистных сооружениях, когда количество бактерий значительно уменьшается, происходит повышение окислительного потенциала, и он достигает позитивных величин. Важно знать, что вне бактериальной жизнедеятельности, например, в тех водах, где она является полностью подавленной, окислительно-восстановительный потенциал сточных вод не изменяется. На очистных сооружениях окислитель, как правило, вводится из внешней среды. Таким окислителем является кислород, что не исключает возможности окисления одних компонентов сточных вод за счет других.

При достаточной концентрации растворенного кислорода органические вещества из минимально окисленного состояния переходят в максимально окисленное. В результате этого процесса органические вещества, содержащие углерод, превращаются в углекислоту и воду, содержащие серу - на сульфаты, содержащие азот – на нитраты. Окисляются не только органические компоненты, но и неорганические. Происходит окисление солей железа (П) в соли железа (Ш), ионов двухвалентного марганца в диоксид марганца и тому подобное. В этом направлении процессы протекают при наличии и сточной воде растворенного кислорода. Активными участниками процессов являются микробы. Это аэробные биохимические процессы.

Аэробные биохимические процессы происходят в городских сточных водах в определенной последовательности в зависимости от величины окисленности компонентов. Вещества, содержащие углерод, имеют низшую степень окисленности по сравнению с солями аммония. Поэтому в аэробном процессе сначала окисляются органические вещества, содержащие углерод, до углекислоты и воды, и лишь потом начинается окисление солей аммония до нитритов и нитратов.

Анаэробные биохимические процессы используются для переработки твердой фазы городских сточных вод; для этих процессов характерно сбраживание при очень высокой концентрации органического вещества. Общая направленность биохимических процессов заключается в разложении органических веществ с образованием жирных кислот и со следующим разложением их на водород, углекислоту, метан и другие соединения. Скорость разложения органических веществ в анаэробных условиях значительно меньше, чем в аэробных. При разложении одной молекулы глюкозы в анаэробных и аэробных условиях реакции протекают с различным термическим эффектом.

Аэробное разложение

С6Н12О6 + 6О2 = 6СО2 + 6Н2О (+ 674 кал)

Анаэробное разложение.

С6Н12О6 = 3СО2 + 3СН4 (+ 27 кал)

Показатели окислительной способности сооружений биохимической очистки

Виды очистных сооружений

Количество кислорода, г на 1 м3 очистных сооружений за сутки

Сооружения естественной биологической очистки

Поля орошения

Поля фильтрации

Биологические пруды

0,5 - 1,0

2,0 - 36,0

12,5

Сооружения искусственной биологической очистки

Контактные фильтры

Аэротенки

Аэрофильтры

Аэрокоагуляторы

72

1000

1000

4500

Как видно из таблицы, окислительная способность сооружений искусственной биологической очистки значительно выше, чем сооружений естественной биологической очистки.

Интенсификация процессов биологической очистки приводит не только к увеличению их окислительной способности, но и к значительному уменьшению площади, которую занимают эти сооружения. При объемах сточных вод 5000 м3/сут площадь, которую занимают поля орошения, составляет 150-200 га, поля фильтрации - 30-50 га, биологические фильтры - 2-3 га, аэротенки -1 га.

studfiles.net

Химические методы очистки сточных вод

Химические методы очистки сточных вод. Окислительные методы. Их достоинства и недостатки.

Химические методы очистки сточных вод. Нейтрализация кислот и оснований.

К химическим методам очистки сточных вод относят нейтрализацию, окисление и восстановление. Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие pH 6,5. 8,5. Нейтрализацию можно проводить различным путем: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы, абсорбцией кислых газов щелочными водами или абсорбцией аммиака кислыми водами. В процессе нейтрализации могут образовываться осадки.

Химические методы очистки сточных вод. Экстрагирование.

К химическим методам очистки сточных вод относят нейтрализацию, окисление и восстановление. Экстракционный метод очистки производственных сточных вод основан на распределении загрязняющего вещества в смеси двух взаимно нерастворимых жидкостей, в зависимости от его растворимости в них. В процессе экстракции экстрагент вводят в обрабатываемую воду. Метод целесообразно применять при относительно высоком содержании в сточных водах растворенных органических веществ, представляющих техническую ценность (фенолы, жирные кислоты)( на предприятиях по термической переработке каменного и бурого углей).

Химические методы очистки сточных вод. Окислительные методы. Их достоинства и недостатки.

К химическим методам относят нейтрализацию и окисление. Химическую очистку проводят как предварительную перед биологической очисткой или после нее как метод доочистки сточных вод. Нейтрализация применяется для обработки производственных сточных вод, содержащих щелочи и кислоты.

Окислительный метод очистки применяют для обезвреживания производственных сточных вод, содержащих токсичные примеси (цианиды, комплексные цианиды меди и цинка) или соединения, которые целесообразно извлекать из сточных вод, а также очищать другими методами (сероводород, сульфиды). В качестве окислителей используют газообразный и сжиженный хлор, гипохлорит кальция и натрия, хлорную известь, диоксид хлора, озон, технический кислород и кислород воздуха и др. В процессе окисления токсичные загрязнения, содержащиеся в сточных водах, в результате химических реакций переходят в менее токсичные, которые удаляют из воды.

6. Обеззараживание воды: хлором и хлоросодержащими веществами, фтором и йодом, озоном, ультразвуком, ультрафиолетовыми лучами, иона серебра. Термическое обеззараживание. Достоинства и недостатки.

Хлорирование воды — обработка воды хлором и его соединениями. Наиболее распространённый способ обеззараживания питьевой воды; основан на способности свободного хлора и его соединений угнетать ферментные системы микробов, катализирующие окислительно-восстановительные процессы.

В чем польза хлорирования воды

Широкому распространению хлора в технологиях водоподготовки способствовала его эффективность при обеззараживании природных вод и способность консервировать уже очищенную воду длительное время. Кроме того, предварительное хлорирование воды позволяет снизить цветность воды, устранить ее запах и привкус, уменьшить расход коагулянтов, а также поддерживать удовлетворительное санитарное состояние очистных сооружений станций водоподготовки.

Эффективность, доступность и умеренная стоимость, а так же большой опыт работы с этим реагентом обеспечили хлору исключительную роль — более 90% водопроводных станций в мире обеззараживают и обесцвечивают воду хлором, расходуя до 2 млн тонн этого жидкого реагента в год.

Можно применять два способа фторирования воды:

1) круглогодичный одной дозой;

2) посезонный: зимней и летней дозой.

В первом случае в воду в течение всего года добавляют постоянную дозу фтора, соответствующую климатическому району, в котором расположен населенный пункт. При меняющейся по сезонам дозе в холодное время года, когда среднемесячная температура воздуха (в 13 ч) не превышает 17-18 °, воду можно фторировать дозой на уровне 1 мг/л, а в теплое время (например, в июне — августе) — меньшей дозой, зависящей от средней максимальной температуры (в 13 ч) за эти месяцы, например, при температуре 22-26 °С берут дозу 0,8 мг/л фтор-иона, при 26-30 °С и более — 0,7 мг/л фтор-иона. Посезонный метод фторирования более приемлемый.

Для УФ обеззараживания воды сегодня применяются волны довольно узкого диапазона — от 250 до 270 нм. В этих рамках бактерицидное воздействия ультрафиолета приобретает свое максимальное значение. Большая часть установок по обеззараживанию воды ультрафиолетом использует лампы низкого ртутного давления, которые производят излучение длиной в 260 нм, то есть оптимальную длину волны. При работе на этой длине волны происходит умягчение воды.

Ультрафиолетовое обеззараживание воды происходит при помощи способности УФ излучения проникать сквозь стенки клетки, добираясь до ее информационного центра — нуклеиновых кислот ДНК и РНК. В ДНК живой клетки хранится вся информация, которая контролирует процесс развития и нормального функционирования в клетке. Ультрафиолетовое обеззараживание воды заключается в поглощении лучей излучения нуклеиновыми кислотами. При поглощении излучения ДНК и РНК теряют способность делится, вследствие чего теряется способность клетки к размножению, так как именно в разделении нуклеиновых кислот заключается репродукция клетки.

Болезнетворные микроорганизмы способны нанести вред человеческому организму только в случае их размножения в организме, при обеззараживании воды ультрафиолетом эта способность утрачивается и, как следствие, любой негативный эффект микроорганизмов исключается.

Ультразвуковые волны – это колебания высокой частоты. Чаще всего используется порог 20 кГц. Этот уровень определяется границей слышимости человеческого уха. Очистка и обеззараживание воды ультразвуком работает при кавитации, возникновении в объеме большого количества образованных газом пузырьков. При их быстром росте и последующем разрушении в жидкой среде возникают резкое локальное увеличение давления и температуры. Именно эти воздействия используются для получения необходимых результатов.

Они разрушают оболочки микроорганизмов, твердые примеси, осевшие в виде слоев на поверхностях труб, иных деталей и узлов. Дополнительные полезные функции выполняют образующиеся при кавитации активные радикалы. Эти соединения ускоряют процессы окисления. При создании излучателя соответствующего типа следует учитывать, что не следует чрезмерно увеличивать частоту. Кавитация происходит интенсивнее в диапазоне от 18 000 до 50 000 Гц. Чтобы обеззараживание жидкости было эффективным необходимо обеспечить высокую плотность поля, от 1,5 до 2 Вт на 1 см. куб. объема. Также потребуется высокая мощность для разрушения слоев механических загрязнений.

Самым старым методом обеззараживания воды является ее кипячение. Этот метод применяется для очистки небольших количеств воды. Его используют для обеспечения обеззараженной питьевой воды столовых, лечебных и административных учреждений и т. д. Однако вследствие высокой стоимости и громоздкости необходимых установок кипячение воды не применяется для обеззараживания воды даже на малых водопроводах. Термическим методом нельзя удалить из воды споры, поэтому вода из сомнительных источников не может обеззараживаться кипячением

© 2015-2017 lektsii.org.

Методы очистки воды

Методы очистки сточных вод обычно классифицируют по характеру основных процессов, на которых они основаны. По этому признаку их подразделяют на механические, химические, физико-химические и биологические или биохимические.

1 .Использование физических методов приводит лишь к изменению формы, размеров, агрегатного состояния и других физических свойств. При этом в последних не исчезают прежние и не возникают какие-либо новые вещества. Физические методы обеспечивают выделение из сточных вод до 95-99% взвешенных веществ и снижают органические загрязнения на 20-25%. Их разделяют на методы процеживания, отстаивания, центрифугирования и фильтрации. В качестве основного оборудования в них применяют различные модификации решеток, сит, отстойников, центрифуг, гидроциклонов и фильтров.

2.Химические методы применяют для удаления из сточных вод растворимых загрязнителей, используя различные реагенты. При взаимодействии с примесями последние образуют безвредные соединения или малорастворимые осадки, в состав которых переходят элементы вредных веществ. Таким образом, изменяются не только физические, но и химические свойства подвергаемых очистке систем. Основными методами химической очистки являются нейтрализация, окисление и восстановление.

Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие рН=6,5-8,5. Нейтрализацию можно проводить различным путем: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы и абсорбцией кислых газов щелочными водами. Выбор метода нейтрализации зависит от объема и концентрации сточных вод, наличия и стоимости реагентов.

1.Нейтрализация смешением. Этот метод применяют, если на предприятии имеются кислые и щелочные воды, не загрязненные другими компонентами. Кислые и щелочные воды смешивают в специальной емкости с мешалкой и без неё. В последнем случае перемешивание ведут воздухом.

2.Нейтрализация путем добавления реагентов. Для нейтрализации кислых вод могут быть использованы: NaOH, КОН, Na2 CO3. СаСО3. цемент и гидроксид кальция (известковое молоко) с содержанием активной извести Са(ОН)2 5—10%. Реагенты выбирают в зависимости от состава и концентрации кислой сточной воды. При этом учитывают, будет ли в процессе образовываться осадок или нет.

3.Нейтрализация фильтрованием кислых вод через нейтрализующие материалы. В этом случае для нейтрализации кислых вод проводят фильтрование их через слой магнезита, доломита, известняка, твердых отходов (шлак, зола). Процесс ведут в фильтрах-нейтрализаторах, которые могут быть горизонтальными или вертикальными.

4.Нейтрализация кислыми газами. Для нейтрализации щелочных сточных вод используют отходящие газы, содержащие СО2. SO2. NO2. N2 O3. Применение кислых газов позволяет не только нейтрализовать сточные воды, но и одновременно производить высокоэффективную очистку самих газов от вредных компонентов.

Для очистки сточных вод используют следующие окислители: газообразный и сжиженный хлор, диоксид хлора, хлорат кальция, пероксид водорода, кислород воздуха, озон и др. В процессе окисления токсичные загрязнения, содержащиеся в сточных водах, в результате химических реакций переходят вменее токсичные, которые удаляют из воды.

1.Окисление хлором. Хлор и вещества, содержащие «активный» хлор, являются наиболее распространенными окислителями. Их используют для очистки сточных вод от сероводорода, гидросульфида, фенолов, цианидов и др.

2.Окисление пероксидом водорода. Пероксид водорода является бесцветной жидкостью, в любых соотношениях смешивается с водой. Он может быть использован для окисления нитритов, цианидов, серо- и железосодержащих отходов и активных красителей.

В кислой среде пероксид водорода переводит соли двухвалентного железа в соли трехвалентного, азотистую кислоту — в азотную, сульфиды — в сульфаты. Цианиды в цианаты окисляются в щелочной среде (рН=9—12).

3.Окисление кислородом воздуха. Кислород воздуха используют при очистке воды от железа для окисления соединений двухвалентного железа в трехвалентное с последующим отделением от воды гидроксида железа. Образующийся гидроксид железа отстаивают в контактном резервуаре, а затем отфильтровывают.

Кислородом воздуха окисляют также сульфидные стоки целлюлозных, нефтеперерабатывающих и нефтехимических заводов.

4.Окисление озоном позволяет одновременно обеспечить обесцвечивание воды, устранение привкусов, запахов и обеззараживание. Озонированием можно очищать сточные воды от фенолов, нефтепродуктов, сероводорода, соединений: мышьяка, ПАВ, цианидов, красителей, канцерогенных ароматических углеводородов, пестицидов и др. При обработке воды озоном происходит разложение органических веществ и обеззараживание воды; бактерии погибают в несколько тысяч раз быстрее, чем при обработке воды хлором.

При введении озона в воду идут два основных процесса — окисление и дезинфекция. Кроме того, происходит значительное обогащение воды растворенным кислородом.

Процесс очистки сточных вод значительно сокращается при совместном использовании ультразвука и озона, ультрафиолетового облучения и озона. Так, ультрафиолетовое облучение ускоряет окисление в 10 2 —10 4 раз.

ΙΙΙ.Очистка восстановлением. Методы восстановительной очистки сточных вод применяют в тех случаях, когда они содержат легко восстанавливаемые вещества. Эти методы широко используют для удаления из сточных вод соединений ртути, хрома, мышьяка.

а)в процессе очистки неорганические соединения ртути восстанавливают до металлической ртути, которую отделяют от воды отстаиванием или фильтрованием. Органические соединения ртути сначала окисляют с разрушением соединения, затем катионы ртути восстанавливают до металлической ртути. Для восстановления ртути и ее соединений предложено применять сульфид железа, железный порошок, сероводород и др.

б)наиболее распространенным способом удаления мышьяка из сточных вод является осаждение его в виде труднорастворимых соединений. При больших концентрациях мышьяка (до 110 г/л) метод очистки основан на восстановлении мышьяковой кислоты до мышьяковистой диоксидом серы.

в)метод очистки сточных вод от веществ, содержащих шестивалентный хром, основан на восстановлении его до трехвалентного с последующим осаждением в виде гидроксида в щелочной среде. В качестве восстановителей используются активный уголь, сульфат железа, водород, диоксид серы.

3.Физико-химические методы основаны на явлениях химического характера, получающих развитие под влиянием изменения термодинамических параметров (давление, объем, температура), эти способы очистки базируются на совокупности явлений, пограничных между физическими и химическими. Физико-химические методы пригодны для осаждения токсичных металлов и их солей, удаления масел и суспендированных веществ, осветления стоков. Выбор конкретного способа определяется свойствами и количеством стоков (коагуляция и флокуляция).

4.Биохимические способы очистки в настоящее время нашли широкое применение для очистки как хозяйственно-бытовых, так и промышленных сточных вод от многих растворенных органических и неорганических веществ, которые используются микроорганизмами в качестве питательных веществ и источников энергии и при этом подвергаются окислению с образованием воды и СО2 при аэробной и восстановительным процессам с образованием метана при анаэробной очистке. В процессе питания микроорганизмов происходит прирост их массы. В сообщество микроорганизмов входит множество различных бактерий, простейших и ряд более высокоорганизованных микроорганизмов (микроводорослей, грибов и дрожжей). Основная роль в сообществе принадлежит бактериям, число родов которых может достигать 5-10, а видов — несколько десятков и даже сотен. Масса микроорганизмов создает так называемый активный ил с концентрацией до 2-5 г/л сточных вод.

Возможность биохимического окисления определяется по отношению, называемому биохимическим показателем. (БПКполн/ХПК)•100,%.

БПКПОЛН — потребление кислорода до начала процессов нитрификации, т.е. окисления нитритов до нитратов.

ХПК — величина, характеризующая общее количество органических и неорганических восстановителей, реагирующих со всеми окислителями, находящимися в сточной воде. Если это отношение равно 50%, то вещества будут поддаваться биохимическому окислению.

Известны два вида процессов с участием микроорганизмов: окислительные (аэробные) в присутствии кислорода, наиболее распространенные в очистке сточных вод. Аэробный метод очистки основан на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40 градусов. При аэробном методе очистки микроорганизмы культивируются в виде активного ила или биопленки.

Восстановительные (анаэробные) методы протекают в отсутствие кислорода и используются для сбраживания осадков.

Аэробные процессы биохимической очистки могут протекать в природных условиях и в искусственных сооружениях.

1.В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах.

а)Поля орошения. Это специально подготовленные земельные участки, используемые одновременно для очищения сточных вод и агрокультурных целей. Очистка сточных вод в этих условиях идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

В процессе биологической очистки сточные воды проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя в порах грунта пленку. Затем образовавшаяся пленка адсорбирует коллоидные частицы и растворенные в сточных водах вещества. Проникающий из воздуха в поры кислород окисляет органические вещества, превращая их в минеральные соединения.

Серьезной проблемой использования полей орошения может явиться загрязнение почвы и заражение растений патогенными бактериями и яйцами гельминтов.

б) Если на полях не выращиваются сельскохозяйственные культуры и они предназначены только для биологической очистки сточных вод, то их называют полями фильтрации. Недостатки — большая площадь, возможность загрязнения подземных вод и воздуха газообразные продуктами разложения /запах — на 200 м/.

в)Биологические пруды — представляют собой каскад прудов, состоящий из 3—5 ступеней, через которые с небольшой скоростью протекает сточная вода. Пруды имеют небольшую глубину (0,5-1 м), хорошо прогреваются солнцем и заселены водными организмами. Бактерии используют для окисления загрязнений кислород, выделяемый водорослями в процессе фотосинтеза, а также кислород из воздуха. Водоросли, в свою очередь, потребляют СО2. фосфаты и аммонийный азот, выделяемые при разложении органических веществ.

К недостаткам этих сооружений следует отнести низкую окислительную способность, сезонность работы, потребность в больших территориях, затрудненность очистки, трудно подобрать состав микроорганизмов, поддерживать их концентрацию на нужном уровне, микроорганизмы часто гибнут.

2.Искусственными сооружениями являются аэротенки и биофильтры при аэробной очистке и метатенки при анаэробной. В искусственных сооружениях процессы очистки протекают с большей скоростью, чем в естественных условиях.

1.Очистка в биофильтрах. Биофильтры — сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для сточной воды и воздуха. В биофильтрах сточная вода фильтруется через слой загрузки, покрытый пленкой из микроорганизмов (биопленкой). Биопленка представляет собой слизистые образования толщиной от 2 мм и более. Биопленка состоит из бактерий, грибов, дрожжей и простейших.

Микроорганизмы биопленки окисляют органические вещества, используя их как источники питания и энергии. Таким образом, из сточной воды удаляются органические вещества, а масса активной биопленки увеличивается. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра. В качестве загрузки используют различные материалы с высокой пористостью, малой плотностью и большой удельной поверхностью: щебень, гравий и шлак.

2.Очистка в аэротенках. Аэротенки представляют собой резервуары, в которых сточная вода смешивается с комплексом развивающихся микроорганизмов, образующих легко оседающие хлопья -активный ил, и насыщается воздухом или кислородом с помощью различных систем аэрации. Аэрация обеспечивает эффективное смешение сточных вод с активным илом, подачу в иловую смесь кислорода и поддержание ила во взвешенном состоянии. В процессе окисления органического вещества увеличивается биомасса микроорганизмов и образуется избыточный активный ил. Процесс очистки в аэротенке идет по мере протекания через него аэрированной смеси сточной воды и активного ила. Аэрация необходима для насыщения воды кислородом и поддержания ила во взвешенном состоянии.

3.Анаэробные методы обезвреживания используют для сбраживания осадков, образующихся при биохимической очистке производственных сточных вод. Для очистки сточных вод используют метановое брожение, которое состоит из двух фаз: кислой и щелочной. В кислой фазе из сложных органических веществ образуются низшие жирные кислоты, спирты, аминокислоты, аммиак, сероводород, диоксид углерода и водород. Изэтих промежуточных продуктов в щелочной фазе образуются метан и диоксид углерода. Процесс брожения проводят в метантенках — герметически закрытых резервуарах, оборудованных приспособлениями для ввода несброженного и отвода сброженного осадка.

К недостаткам относится медленный рост анаэробных, особенно метановых, бактерий.

Химические способы очистки воды

Очищать воду от вредных примесей необходимо в обязательном порядке. В противном случае вода вместо своей целебной восстанавливающей организм силы проявит исключительно негативные характеристики. Так, неочищенная или некачественно очищенная вода может стать смертельным ядом для человеческого организма. Тем более необходимо очищать сточные воды перед их сбросом в водоемы. Для освобождения жидкости от различных вредных включений используются различные методы и способы, в зависимости от физического состояния примесей. Но, если же, вредные вещества в воде находятся в большей степени в растворенном состоянии, то применяется химическая очистка воды.

Важно: химический метод очистки жидкости широко применим при очистке сточных вод, как промежуточный этап перед её биологической или механической обработке.

Принципы выполнения химической очистки

Абсолютно все химические способы очистки воды работают по одному и тому же принципу

Абсолютно все химические способы очистки воды работают по одному и тому же принципу — добавление в грязную воду химических элементов (реагентов) с целью преобразования растворенных веществ во взвешенное состояние. Только после этого их можно будет качественно удалить из имеющегося объема жидкости.

Важно: химочистка воды способна освободить воду на 95% от всех примесей во взвешенном состоянии и на 25% от примесей растворенных.

Для выполнения очистки воды химическим способом применяются три распространенных типа реагентов:

  • Окислители. В качестве реагентов здесь используют озон, перманганат калия (марганец) и хлор.
  • Щелочные реагенты в виде извести, соды или гидроксида натрия.
  • Кислотные реагенты — соляная и серная кислоты.

При этом концентрация взвесей в грязной воде может находиться в диапазоне от 1 мг/литр до 30 гр/литр.

Важно: химические методы очистки воды применяются в основном на промышленных предприятиях. Работать с реагентами в домашних условиях крайне опасно.

Способы очистки воды химическими методами

Нейтрализация

Этот метод очистки направлен на полную нейтрализацию всех патогенных микроорганизмов и других включений

Этот метод очистки направлен на полную нейтрализацию всех патогенных микроорганизмов и других включений, а также на выведение уровня pH воды на нормативные показатели в пределах 6,5-8,5.

Процесс нейтрализации при очистке сточных вод может выполняться несколькими способами. Так, самые часто применимые — такие:

  • Процесс смешивания между собой кислых и щелочных сред в виде жидкости;
  • Добавление химических реагентов в стоки;
  • Фильтрация сточных вод с кислотным содержимым при использовании нейтралиузющих реагентов;
  • Нейтрализация любых газов в сточной воде при помощи щелочных реагентов;
  • Добавление в стоки с кислотным содержимым аммиачного раствора. Здесь же для нейтрализации кислот в воде можно применять цемент; гидроксид кальция и доломит.

Окисление грязной воды

Метод окисления применяется для стоков в том случае, если при отстаивании и механической чистке воды примеси не удаляются

Метод окисления применяется для стоков в том случае, если при отстаивании и механической чистке воды примеси не удаляются. В качестве реагентов используются:

  • Бихромат калия.
  • Озон. Этот реагент хоть и является качественным и отлично очищает воду, все де используется крайне редко ввиду высокой стоимости процесса очистки. Но при этом стоит знать, что озонирование позволяет очистить воду от ПАВ, любых нефтепродуктов, от красителей и мышьяка, от канцерогенных включений и от фенолов с цианидами.

Важно: помимо высокой стоимости процесса озон также не используется при очистке сточных вод по причине его взрывоопасности при условии наличия его в большом объеме.

  • Хлор в состоянии газа или в сжиженном состоянии (при этом вода впоследствии должна дополнительно дехлорироваться, поскольку доказано, что хлор вступает в реакцию с компонентами воды и образует таким образом вредную хлорволокнистую кислоту или соляную кислоту).
  • Хлорат кальция или диоксид хлора.
  • Кислород воздуха, пиролюзит и др.

После процесса окисления все микроорганизмы и патогенные бактерии полностью погибают под воздействием добавленных в стоки реагентов.

Процесс восстановления как метод очистки воды

Этот метод работает по принципу восстановления всех включений до своего первоначального физического состояния

Этот метод работает по принципу восстановления всех включений до своего первоначального физического состояния с целью последующего их удаления из воды с помощью одного их физико-химических методов:

В основном такой метод применяется для очистки жидкости от частиц мышьяка, ртути и хрома. В качестве реагентов здесь применяют:

  • Сульфат железа;
  • Диоксид серы;
  • Активированный уголь, водород и пр.

Физико-химическая обработка воды

Такие методы обработки и очистки грязной воды являются неотъемлемой частью борьбы с вредными включениями при очистке стоков

Такие методы обработки и очистки грязной воды являются неотъемлемой частью борьбы с вредными включениями при очистке стоков. Самыми основными из них являются:

  • Коагуляция примесей. Такой метод очистки сточных вод чаще всего используется на текстильной промышленности, химической, целлюлозной и легкой промышленности. Принцип воздействия реагентов на грязную воду заключается в том, чтобы преобразовать все включения в форму хлопьев. Затем такой взвешенный осадок удаляется при отстаивании или фильтровании. При использовании метода коагуляции эффективность очистки стоков равна 90-95%.

Важно: также для грязной воды может использоваться и метод электрокоагуляции, когда в воду помещают токопроводники и пропускают ток через водную массу.

Адсорбция воды

Этот способ позволяет адсорбентам поглотить все вредные включения непосредственно в воде

Этот способ позволяет адсорбентам поглотить все вредные включения непосредственно в воде. В основном метод адсорбции для очистки сточных вод применим против пестицидов, гербицидов, красителей, ПАВ и фенолов в воде. Также при помощи адсорбции удаляются все ароматические примеси.

Различают два основных и часто используемых вида адсорбции:

  • Дегенеративный. В этом случае все вредные включения убиваются вместе с введенным в воду адсорбентом.
  • Регенеративный. Здесь вредные примеси можно в дальнейшем извлечь из введенного в воду адсорбента и утилизировать отдельно.

Адсорбирующими реагентами являются:

  • Силикагель и торф;
  • Зола, активная глина и пр.

Стоит отметить, что эффективность приведенного метода составляет 90-95%, но полностью зависит от следующих факторов:

  • Концентрация имеющихся вредных примесей в очищаемой воде;
  • Тип используемого реагента-адсорбента;
  • Общая площадь стоков, обрабатываемых методом адсорбции;
  • Общая глубина очищаемого объема воды.

Метод флотации

В этом случае для очистки сточных вод используют метод, в котором при помощи воздействия на них воздуха под высоким давлением удается удалить все взвеси

В этом случае для очистки сточных вод используют метод, в котором при помощи воздействия на них воздуха под высоким давлением удается удалить все взвеси. То есть воздух нагнетается в воду либо через турбины на дне водного резервуара, либо через трубы сверху. Нагнетенный в воду воздух вспенивает жидкость. При этом воздух вступает в реакцию с молекулами примесей и поднимает все взвеси в пенный слой. Далее все примеси с поверхности воды удаляются при помощи специальных установок.

Важно: метод флотации особенно востребован в том случае, если в воде имеются нефтепродукты, масла и любые волокнистые включения.

Ионный обмен в воде

Здесь в воду вводят ионы ионита, что приводит к взаимодействию последних с молекулами примесей. При возникновении реакции молекулы вредных веществ отделяются от воды, что позволяет качественно их удалить. Как правило, метод ионного обмена применяют для очистки воды от ртути и мышьяка, хрома и цинка, свинца и меди.

Экстракция загрязнителей воды

Данный способ применим при очистке воды в том случае, если примеси, растворенные в воде, имеют техническую или химическую ценность и могут быть использованы впоследствии

Данный способ применим при очистке воды в том случае, если примеси, растворенные в воде, имеют техническую или химическую ценность и могут быть использованы впоследствии. Метод основывается на выведении из состава грязной воды фенолов и жирных кислот. Как правило, для очистки воды таким способом в стоки вводят специальный экстрагент, который полностью концентрирует примеси в воде. Затем экстрагент с примесями удаляют из воды и отделяют один от другого. Стоит знать, что экстрагент можно использовать повторно.

Важно: все приведенные выше способы очистки воды при помощи реагентов являются потенциально опасными для рядового обывателя и не могут применяться в домашнем водоснабжении. Поэтому экспериментировать с эти не рекомендуется.

Источники: http://lektsii.org/16-54121.html, http://studopedia.ru/3_191167_metodi-ochistki-vodi.html, http://vodakanazer.ru/vodopodgotovka/ochistka-i-filtraciya-vody/ximicheskaya-ochistka-vody.html

septikman.ru

Химические методы очистки сточны

 

 

Химические методы очистки сточных вод гальванических отделений основаны на применении химических реакций, в результате которых загрязнения, содержащиеся в сточных водах, превращаются в соединения, безопасные для потребителя, или легко выделяются в виде осадков.

Среди известных методов химической нейтрализации сточных вод, содержащих цианистые соединения, техническое применение нашли лишь немногие.

Самый старый метод основан на выделении ионов CN- в виде труднорастворимой комплексной соли, образующейся в основной среде в присутствии ионов Fe2+.

В зависимости от условий в которых протекают эти реакции, возникает осадок берлинской лазури Fe43 или турнбулевой сини Fe32. Качественное удаление ионов из сточных вод с помощью этого метода возможно лишь в случае очень точной выдержки всех установленных условий реакции и в особенности pH, реакционной среды.

Применяемый метод удаления цианистых соединений из сточных вод базируется на их окислении хлором (либо гипохлоритом) в основной среде. Наиболее часто здесь применяют гипохлорит натрия, хлорную известь и газообразный хлор. Соединения эти в основной среде гидролизуются с получением ионов ClO-, которые с цианидами реагируют в соответствии с реакцией:  

CN- + HOCl = CNCl + OH-; (a)

CNCl + 2OH- = CNO- + Сl- + h3O. (б)

Реакция окисления цианидов до цианатов протекает в 2 стадии, сначала образуется хлорциан, который затем гидролизуется до хлорцианатов.

Т.к. хлорциан является сильно отравляющим газом, то в реакционной среде необходимо иметь такие условия, чтобы скорость реакции (б) была бы больше скорости реакции (а). Такие условия наблюдаются в том случае, когда концентрация цианидов в сточных водах меньше 1 г/л, t сточных вод < 50 градусов и pH > 8,5. Из исследований скорости гидролиза хлорциана следует, что она значительно зависит от реакции среды:

рН реакц. среды 8 9 10 11 12

Прод. гидрол. СNCl, ч 20 12 4 1 0,25

Установлено, что расход гипохлорида при окислении цианидов до цианатов также зависит от рН реакционной среды. При рН равном 8,5, его расходуется на 35-80% больше, чем это следует из расчетов, a при рН = 11 – на 10% больше. Это связано с расходом гипохлорита на дальнейшее окисление части цианидов до двуокиси углерода и азота:

2CNO- + OCl- + h3O = 2OH- + Cl- + 2CO2 + N2.

На кинетику этой реакции заметное влияние оказывает концентрация окислителя (гипохлорит) и рН реакционной среды. При рН > 10 скорость ее так мала, что после 24 ч только незначительная часть цианатов подвергается дальнейшему окислению. В этих условиях значительное ускорение реакции достигается только при многократном повышении содержании гипохлорита, что на практике невозможно, т.к. высокая концентрация активного хлора в сточных водах недопустима и требует мер по его удалению.

При снижении рН до 7,5-8,5 при небольшом избытке гипохлорита (10%) реакция окисления цианидов заканчивается в течение 10-15 минут.

Теоретический расход окислителя, выраженный массой активного хлора, идущего на окисление 1 г ионов CN-, образуемых при диссоциации простых цианидов до цианатов, достигает 2,84 г, а при окислении до СО2 и N2 - 6,2 г. Т.к. в цианистых сточных водах содержатся также комплексные цианиды различных металлов, то для окисления 1 г СN применяют следующее количество хлора:

до цианатов - 3,3 г Cl; до СО2 и N2 - 8,5 г Cl.

Несмотря на то, что цианаты в 1000 раз менее токсичны по сравнению с цианидами, все же они требуют дальнейшей нейтрализации, которая может протекать вышеприведенным способом до СО2 и N2, либо путем их гидролиза до солей аммония по реакции

CNO- + 2h3O +2H+ = NH+4 + h3CO3.

При рН < 3 реакция гидролиза протекает за 2 минуты.

Гипохлоритный метод окисления цианидов до цианатов применяют при очистке обычных сточных вод гальванических отделений, в которых концентрация цианидов (в пересчете на ионы СN) не превышает 100-200 мг/л. Сточные воды с более высокой концентрацией цианидов (отработанные электролиты) требуют соответствующего разбавления, или др. методов очистки из-за опасности выделения очень ядовитого цианида хлора.

На практике нейтрализацию цианистых сточных вод проводят периодическим или непрерывным методом. Однако существует тенденция к установке, даже в небольших гальванических отделениях, автоматических проточных устройств. Независимо от способа накопления сточных вод в устройствах повсеместно применяемый способ их очистки основан на окислении цианидов до цианатов при рН=10-11 и дальнейшем их окислении до СО2 и N2 при рН = 7,5-8,5, либо гидролизе до солей аммония при рН < 3.

Процесс очистки цианистых сточных вод не заканчивается их нейтрализацией содержащихся в них цианистых соединений, т.к. в них еще остаются для удаления соединения тяжелых металлов (цинка, меди, кадмия и др.). Когда сточные воды окисляют методом полного окисления цианидов, то в следующей стадии процесса (окисление цианатов до СО2 и N2) coздаются благоприятные условия для полного выделения гидроокиси металлов в виде взвеси. При проведении же процесса гидролиза цианатов до солей аммония в кислой среде необходима добавочная нейтрализация кислот, содержащихся в сточных водах для создания условий, благоприятствующих образованию и выделению взвеси гидроокиси металлов.

Т.к. в полнопрофильных гальванических отделениях образуются также и остальные 2 группы сточных вод (хромовых и кислых с основными), то индивидуальное выделение и удаление взвеси тяжелых металлов из цианистых сточных вод не применяют (после нейтрализации цианистых соединений). Такую операцию проводят на смешанных сточных водах. Наиболее часто применяют обработку цианистых сточных вод методом гидролиза, чем их окисление до СО2 и N2. Такой метод более простой и дешевле в эксплуатации.

Конец реакции окисления цианидов до цианатов можно установить определением содержания цианидов аналитическим способом. Практически было установлено, что выдержка в течение 15 мин избытка активного хлора (5-15 мг/л) в сточных водах при рН равном 10,5-11 определяет окончание реакции окисления цианидов.

Вышеописанный метод (реагентный) в настоящее время получил наибольшее распространение в отечественной практике обезвреживания сточных вод гальванических цехов. Основное его достоинство – крайне низкая чувствительность к исходному содержанию загрязнений, а основной недостаток - высокое остаточное солесодержание очищенной воды. Последнее вызывает необходимость в доочистке.

Среди методов очистки сточных вод гальванических цехов, имеющих промышленное значение, кроме уже упомянутых химических методов, внимания заслуживают ионные и электрохимические методы. Каждый из этих методов имеет свои недостатки и преимущества, тем не менее они являются несомненно более современными по сравнению с классическим химическим методом. Основное преимущество – нейтрализация концентрированных сточных вод, получение ценных электролитов и чистой воды, пригодной для повторного использования. С помощью таких методов возможно создание в гальваническом цехе замкнутой системы циркуляции технологической воды и почти полное устранение необходимого слива сточных вод в канализационную систему.



biofile.ru

Физико-химические методы очистки сточных вод: сорбция, флотация

Для выбора способа очищения определяется структура загрязнений на предприятии, как правило, пускается в ход комбинация из различных технологий. К примеру, в сточных водах большинства предприятий содержатся токсичные соединения: соли тяжелых металлов, цианиды, органические вещества. Если необходимо предварительное удаление этих примесей, то используются химические методы очистки сточных вод.

Конкуренцию этим способам составляют электрохимические технологии обработки сточных вод. Химическая методика применяется для улучшения воды, содержащей органику, СПАВ, нефтепродукты, фенол. Технологии входят в группу физико-химическойобработки и являются наиболее приоритетными в промышленном направлении очищения.

Применение физико-химических средств очищения на производстве

К основным физико химическим методам очистки сточных вод на производстве относится:

  • сорбция;
  • обратный осмоc;
  • флотация;
  • нейтрализация;
  • выпаривание;
  • ионообменная очистка;
  • кристаллизация;
  • электрохимическая обработка.

Флотационная очистка сточных вод спроектирована для разрушения нефтепродуктов и других гидрофобных соединений. Поэтому флотация используется для очищения стоков, в водном составе которых наличествуют примеси нефтепродуктов. Технологии флотации продуктивны в устранении поверхностно активных соединений.

Флотационные технологии разделяют на 3 способа:

  1. Флотация при помощи пузырьков, которые образуются механическим разделением воздуха.
  2. Процесс флотации формируется от переизбытка потока воздуха в стоках. Подобный способ разделяется на напорную и вакуумную флотацию.
  3. Электрофлотация.

Возможно совмещение флотационного способа с другими разработками. В основном добавляют коагуляцию и флокуляцию. Неорганические коагулянты подкисляют сточные воды, считается, что такой же эффект дают некоторые полимерные вещества. Средство напорной флотации имеет эффективность у нефтеперерабатывающих заводов.

Применение химических средств очищения на производстве

Химическое очищение на производстве

К основным химическим способам устранения из воды загрязнений относят: нейтрализацию, окисление и восстановление. Химическая очистка воды сильно зависима от расходов реагентов и их стоимости. При этом технология проста и эффективна, применять ее можно даже при большой доле загрязненной воды.

Последние исследования установили, что реагентный метод очистки сточных вод результативно работает при дозировании, а также при правильном подборе коагулянтов и флокулянтов. Но необходим строгий контроль использования реагентов, определение уровня загрязненности и установление химических показателей водного состава. На производствах с применением реагентного очищения обычно используется автоматизированный контроль.

Применение электрохимических средств очищения на производстве

К основным электрохимическим способам относятся: электрокоагуляция, электродиализ, электрофлотация и другие. К установкам данного способа относят аппараты для электрохимической деструкции, электрокоагуляторы, электрофлотаторы.

Электрофлотатор для очистки сточных вод

Устройство электрофлотатор для очистки сточных вод компактно, безотказно и выигрышно при эксплуатации. При этом электрофлотатор легко автоматизируется. Его применение целесообразно использовать в бытовом направлении и промышленных масштабах.

Актуальным является применение электрохимических разработок на нефтеперерабатывающих предприятиях. На НПЗ в больших объемах используется водный поток, поэтому важно оптимально расходовать средства на организацию системы очищения стоков. Прочие методы очистки воды на нпз имеют свои достоинства, но у электромеханического способа следующие преимущества:

  • Минеральные соединения сточной воды не изменяются
  • Образуется небольшая часть отходов, что экономит затраты на утилизацию
  • Отпадает потребность в реагентах
  • Установки способны выполнять работу в автоматическом виде
  • У электрохимической установки простая технология
  • Нет надобности в больших площадях для установки оборудования.

По этой причине электрохимические методы очистки воды относятся к одним из результативных и удобных средств. При этом у электрохимического применения существует несколько недостатков. Это высокие затраты на оборудование, отложение солей на электродах и выделение газов, которые образуют взрывоопасные смеси. Последний пункт требует обязательной установки противопожарной вентиляции.

Путь сточных вод от канализации до водоема: Видео

vseowode.ru


.