Монополярно-биполярный электролизер для получения смеси водорода и кислорода. Электролизеры для получения водорода


Получение водорода. Установки получения (производства) водорода.

Общее описание

  • Генератор водорода
    • Установка оборудована 2 пакетами элементов для производства водорода 30 нм³/ч
    • Контейнер модернизирован и подготовлен для увеличения производительности в будущем до 45 нм³/ч. Так же если в будущем потребуется дополнительно увеличить мощность, то контейнер рассчитан на увеличение до 60 нм³/ч.
  • Модуль хранения объемом 50 м³ по воде для хранения 450 нм³ водорода при 10 бар.

Предложенная нами система включает стандартные встроенные системы безопасности, стандартное заводское приемочное испытание и комплект технической документации.

Услуги на месте включают: пуск системы, ввод в эксплуатацию и обучение на месте. Строительные работы и подготовка площадки, выполняемые на месте, осуществляются заказчиком в соответствии с требованиями.

Энергоисточники (вода, электричество, азот, воздух КИП,…) должны быть доступны на месте.

Характеристики электролизера:

  • Полностью автоматическая работа
  • Полный контроль получения водорода
  • Производство под давлением (10 бар изб.) без установки компрессора
  • Высокая эффективность и надежность
  • Очень низкие затраты на техническое обслуживание (ограниченное число подвижных деталей, без насоса для электролита)
  • Водород не содержит углерода – без вредных выбросов
  • Производственный процесс сертифицирован по ISO 9001, 14001
  • Услуги по пуску и пост-продажному обслуживанию

Введение

Установка производства водорода в контейнерном исполнении для установки снаружи представляет собой комплексную установку производства водорода с производительностью по водороду 60 нм³/ч при чистоте 99,998% и давлении 10 бар (изб.)

Разработан модифицированный ISO контейнер повышенной вместимости для размещения генератора водорода и всего его питающего оборудования.

Ввод оборудования для наружного размещения в эксплуатацию на площадке заказчика тем самым значительно облегчен по сравнению с установкой в существующее помещение генератора на базе скида.

Надежность

Используя принцип внедрения технологического уровня эксплуатационной безопасности оборудования каждая установка помимо прочего обладает следующими характеристиками:

  • минимальное присутствие газа в системе
  • определение минимального давления для предотвращения попадания воздуха
  • система непрерывного мониторинга/обнаружения водорода в атмосфере
  • система защитной вентиляции зона II (только с кожухом или корпусом (каркасом) для наружного размещения)
  • надежная логическая схема для всех параметров
  • Система бесперебойного питания, обеспечивающая безопасное отключение в случае аварийного отключения питания
  • Система постоянного мониторинга, чистота производства О2 газа
  • Системы множественного / параллельного управления
  • Многократное резервирование параметров, которые являются критичными в рамках безопасности системы

Автоматизация

Надежность – это одно из наиболее значимых требований для наших заказчиков. Установка разработана для полностью непрерывной эксплуатации с минимальной потребностью в присутствии оператора, обеспечивая константный поток водорода.

  • Система контроля давления: Человеко-машинный интерфейс на панели управления позволяет операторы выбрать требуемое давление газа (между 8 и 10 бар изб.). Установка автоматически регулирует свою производительность с тем, чтобы обеспечить установленное давление.
  • Автоматизация охлаждения: охлаждающая вода поступает в теплообменники через клапан, регулируемый ПЛК. При повышении температуры клапан открывается, тем самым подавая большее количество охлаждающей воды в контур. В результате этого – стабильная производственная температура.
  • Автоматическая продувка азотом: следуя принципам системы, продувка азотом требуется перед запуском установки при внутреннем давлении ниже 15 кПа. Процесс продувки регулируется ПЛК системы путем активации клапана в последовательном процессе.
  • Удаленный I/O: используя современное соединение PROFIBUS, мы значительно уменьшили количество соединительных кабелей и соответственно время, необходимое на установку. Внедрение прокола в комбинации с безопасным ПЛК и безопасным I/O позволяет системе полностью соответствовать самым строгим актуальным нормам и стандартам безопасности. ПЛК автоматически диагностирует любые ошибки передачи данных, не только делая систему безопаснее, но также сокращая время и силы на устранения неполадок.

Объем поставки

Сенсорный экран с человеко-машинным интерфейсом (HMI)

Экран HMI расположен на панели управления и позволяет оператору контролировать и эксплуатировать электролизер либо с экрана, либо с удаленного соединения, через защищенное соединение VPN. Система мониторинга включает в себя запись данных на компактную флэш карту. Она также позволяет нашим техническим специалистам подключаться к электролизеру, для диагностики и исправления случаев неисправностей и тревожной сигнализации при необходимости.

Исполнение контейнера

ISO 40’ футовый контейнер спроектирован и модифицирован для размещения водородной установки 60 нм³/ч и включает:

  • изолированные стенки и перекрытия
  • пол из металлических листов
  • запираемые двери во внешних стенках
  • Освещение во всех отсеках
  • Все устройства полностью оснащены и установлены на место вкл. трубную обвязку и кабели, что значительно сокращает время и затраты на установку / межсоединения на месте.
  • Два вытяжных вентилятора, которые вытягивают воздух через технологическое помещение из помещения общего назначения. Первый обеспечивает минимальный поток и работает постоянно. Поток проверяется между помещением общего назначения и технологическим помещением и подается аварийный сигнал, если минимум не достигнут.

Второй вентилятор активируется, когда температура окружающего воздуха в технологическом помещении находится вне пределов спецификации или когда обнаружен водород.

Технологический скид

Ключевым компонентов электролизного скида является пакет биполярных ячеек для электролиза воды под давлением. Пакет ячеек состоит из кольцевых электролизных ячеек, в каждой из которых содержатся два электрода и одна щелочная неорганическая ионообменная мембрана.

Генерация h3 и O2 происходит при подаче тока на пакет ячеек. Газы затем направляются на газовый сепаратор, который представляет собой двойной сосуд под давление из нержавеющей стали, после которого они промываются в специально спроектированном напорном сосуде, расположенном над газосепаратором.

Технологическая часть поставляется как полностью собранный скид, в который включено оборудование, например:

  • Пакеты ячеек
  • Газосепарторы, установка промывки газообразного водорода и коалесцирующие фильтры
  • Теплообменники для электролита и системы газового охлаждения
  • Лоток детектора утечек с реле уровня
  • Детектор водорода , панель анализатора для водорода в кислороде
  • Приборы кип и распределительные коробки: датчики, трансмиттеры, реле и т.д.
  • Клапаны и вентиляционные коллекторы (h3 и O2)

Блок управления

Шкаф панели управления включает в себя ПЛК и все соответствующее оборудования для обеспечения автоматической и надежной эксплуатации установки. Панель управления с помощью кабелей будет подсоединена как к технологической части, так и к силовой стойке. Характеристики:

  • Утвержденный электрический кожух с 2 запираемыми дверцами
  • Вентиляторы охлаждения + система фильтрации воздуха
  • ПЛК (Siemens S-7 программное обеспечение)
  • Снаружи: терминал с дисплеем для визуализации и HMI
  • Аварийный останов на дверце кожуха
  • Блок бесперебойного питания для безопасного отключения
  • Источник питания 24 В пост. тока
  • Автоматические выключатели и трансформаторы
  • Печатные платы и звуковая сигнализация

Блок питания

Блок питания конвертирует входящей 3х фазный переменный ток в стабилизированный постоянный ток, требуемый для процесса электролиза.

Каждый блок питания может питать до 2 пакетов элементов и состоит из:

  • Кожух с запираемой дверцей
  • Охлаждающие вентиляторы + система фильтрации воздуха
  • Защитная блокировка дверного переключателя
  • ПЛК контролируется тиристорами
  • Трансформатор
  • Выпрямительный диод
  • Автоматические выключатели, контакторы
  • Измерительный пакет элементов на дверце амперметр и вольтметр
  • Устройство проверки фазы

Система очистки водорода

Система очистки водорода спроектирована для дальнейшей очистки водорода до минимального уровня в размере 99.998%. Данная чистота достигается в 2 этапа:

Этап 1. Деоксидизация: для уменьшения содержания O2 в потоке газообразного h3 с помощью каталитической реакции. Выход O2 в h3 составляет менее 10 ppm или опционально менее 2 ppm.

Этап 2. Осушка: для удаления влажности в 2 колоннах осушки. Одна колонна находится в работе, в то время как вторая находится в режиме резерва / регенерации. Водород на выходе будет иметь атмосферную точку росы менее -60 °C или опционально менее -75 °C.

Система очистка водорода сконструирована на скиде и располагается в технологическом помещении. Система очистки водорода управляется с помощью центрального ПЛК в панели управления и имеет следующие особенности:

  • Сосуд деокисидзации с катализатором для удаления О2 в h3 (с обогревом и изоляцией)
  • Теплообменник
  • Коалесцирующий фильтр
  • Система дренажного сосуда для удаления воды
  • Оборудование КИП
  • Две колонны осушки с молекулярным ситом (с обогревом и изоляцией) (с временной регенерацией)
  • Соединения до контура охлаждения газа
  • Соединение до вентиляционных коллекторов технологической части (h3 и O2)

Холодильник (охлаждение газа)

Холодильник подает охлаждающую воду низкой температуры в замкнутый контур газообразного водорода и кислорода в сторону теплообменников при температуре 15 °C, вне зависимости от температуры окружающей среды. Охлажденная вода охлаждает газообразный водород и кислород, превращая водяной пар, появляющийся в процессе электролиза, в конденсат. Затем он фильтруется и удаляется из потока газа. Холодильник устанавливается внутри кожуха для применения внутри помещения и включает насос и расширительный бак.

Спецификация на чиллер

Система охлаждения электролита

Данная система охлаждения, включающая в себя насосный скид и сухой охладитель, выводит тепло в окружающий воздух.

Охлаждающая вода, как правило, водный раствор этиленгликоль, циркулирует в закрытом контуре, через высокопроизводительный теплообменник по типу «электролит-вода», установленный в технологической части установки производства водорода.

Благодаря системе охлаждения закрытого цикла гарантируется полная выходная способность установки по водороду в диапазоне температуры окружающей среды от -40 до +40°C. Сухой охладитель и насосный скид регулируются с помощью центрального ПЛК в панели управления.

Спецификация на сухой охладитель

Система подготовки питательной воды

Система подготовки питательной воды превращает водопроводную воду в чистую деминерализованную воду, необходимую для процесса электролиза. Осуществляется постоянный мониторинг за качеством воды, прежде чем она сможет поступить в процесс. Размеры ВхШхГ – 1,5х1,0х0,5 м

Система включает в себя такие фильтрационные очистные этапы как:

  • Мембрана обратного осмоса
  • Ионообменная система смешанного типа со смолой (2 резервуара, наполненные смолой)
  • Система смягчения воды с цифровым дозирующим насосом (анти-накипь)
  • Измеритель электропроводности
  • Активированный уголь и предварительные фильтры для улавливания частиц
  • Указатели давления и реле

Спецификация на питательную воду

Техническая спецификация

Вышеуказанные данные представлены только для информации и не могут быть использованы для гарантийных целей.

Общий вид

Дополнительные опции (по запросу)

Улучшение чистоты -75 °C 2ppm O2

Данная опция снижает атмосферную точку росы произведенного h3 с -60 °C до -75 °C, а содержание О2 в произведенном h3 с 10ppm до 2 ppm.

Уменьшенное содержание N2 – распылительный разбрызгиватель

Распылительный разбрызгиватель – это устройство, устанавливаемое на входе деминерализованной воды установки производства водорода для уменьшения содержания N2 менее 2 ppm произведенного h3.

Замер чистоты в режиме реального времени

Производится непрерывный мониторинг произведенного h3 в реальном времени как по содержанию воды («точка росы»), так и по содержанию кислорода. Данная опция может быть выбрана только в сочетании с системой очистки водорода.

Спускной клапан (только в комбинации с системой замера чистоты в режиме реального времени)

Данное устройство автоматически выпускает h3 в атмосферу, в случае если его качество не соответствует спецификации. Данная опция может быть выбрана только в комбинации с системой замера чистоты h3 в режиме реального времени.

Использование кислорода

Стандартно О2 сбрасывается в атмосферу. Производитель может обеспечить опциональную систему для очистки О2 и его подготовки для дальнейшего использования / очистки со стороны заказчика.

Система кондиционирования воздуха на панели управления

Это модульная установка кондиционирования воздуха, устанавливаемая на электропанелях. Данное устройство рекомендовано для систем, часто эксплуатируемых в температурах окруж. среды более +40 °C

Массовый расходомер

Массовый расходомер – это непосредственный замер объема h3, идущего в линию заказчика.

Содержание кислорода в детекторе атмосферы

Трансмиттер кислорода в атмосфере может быть реализован в технологическом помещении для непрерывного мониторинга уровня O2 в атмосфере технологического помещения. Система сигнализации срабатывает, если уровень кислорода падает ниже или поднимается выше безопасных предельных значений.

Автоматический перезапуск

Данная функция позволяет установке непрерывно определять актуальное давление в линии заказчика. Если установка находится в резервном режиме, то с помощью данной функции установка может быть автоматически повторно запущена, как только давление линии заказчика окажется ниже заданного порогового значения.

Опции по каркасу для наружной установки

Низкотемпературная опция:

Будут предприняты специальные действия, чтобы допустить работу при температуре окружающей среды до -40 °C. Например, адоптированная система охлаждения с закрытым контуром и усиленная система обогрева.

Аварийные огни:

В случае отключения сетевого питания аварийные огни в помещении с приборами управления будут светить до 30 минут.

Внешние огни:

Огни снаружи контейнера при входе в помещение с приборами управления / для инженерного оборудования и технологического помещения.

Вентиляционные трубы:

Две трубы из высококачественной нержавеющей стали с колпачками от дождя для безопасной вентиляции h3 и О2. Длина данных вентиляционных труб соответствует спецификации, для каркаса для наружного размещения, который установлен в зоне без прилегающих конструкций. Вентиляционные трубы должны быть вертикально соединены на месте к специально определенным фланцам на боковой стороне контейнера. Кабели обогрева для защиты труб от нулевых температур (точка замерзания) включены в данный объем.

Границы объема поставки

Границей установка электролиза является каркас для наружного размещения. На внешних стенках каркаса для наружного размещения имеются металлические пластины, которые включают следующие соединения:

  • Пользователь водородного газа
  • Вход питательной воды
  • Вход воздуха КИП
  • Вентиляционное отверстие кислорода (вентиляционная линия не включена)
  • Вентиляционное отверстие водорода (вентиляционная линия не включена)
  • Соединение дренажа конденсата
  • Вход инертного газа (азот)
  • Электрические межсоединения: включены внутри контейнера
  • Механические межсоединения: включены внутри контейнера
  • Энергопитание: автоматический прерыватель на стороне электролиза.
  • Охлаждающая вода (2 контура):

Сухой охладитель (охлаждение электролита)

  • Сухой охладитель поставляется в отдельной коробке. Он спроектирован для установки на крыше каркаса для наружного размещения, а объем поставки включает технические условия на крыше контейнера для их установки.
  • Трубка обвязки и кабели для соединения контейнера к внутренней части контейнера включены, но монтаж сухого охладителя на крыше и осуществление соединений на месте осуществляются заказчиком.

Холодильник (охлаждение газа):

  • Холодильник поставляется с полностью выполненными соединениями в каркасе для наружного размещения

Установка водоподготовки:

  • Установка водоподготовки поставляется с полностью выполненными соединениями в каркасе для наружного размещения.

intech-gmbh.ru

аппараты для домашнего использования, вид, сборка и установка устройства

Электролизеры — это установки для получения чистых химических элементов методом пропускания электрического тока через жидкий электролит. В промышленности с их помощью получают металлы методом электрохимической осадки. В домашних условиях электролизеры используются для получения Брауновского газа, смеси водорода с кислородом путем расщепления воды. Для запуска процесса установка нуждается во внешнем источнике питания.

Принцип работы электролизной установки

Знакомство с устройством и принципом работы простейшей установки для электролиза многие прошли еще в школе на уроках физики. Помещая два электрода в соляной раствор и пропуская через него постоянный ток, на одном появляется чистый металл, а со второго начинается выделение газа.

Установкам, предназначенным для получения водорода, необходимо мощное электрическое поле для того, чтобы разорвать атомарные связи. Для облегчения процесса в воду добавляется щелочной катализатор. В основном используют NaOH — натрия гидроксид или NaHCO 3 — соду.

Натрия гидроксид содержится в чистящих средствах Крот и Мистер Мускул. И, кроме пищевой соды, можно использовать и каустическую соду.

Катализатор за счет химических реакций берет на себя значительную часть работы. Ионы гидрогсидной группы притягиваются к положительному электроду. Натрий к отрицательному потенциалу, а освободившиеся молекулы водорода свободно выходят из жидкости.

Применение электролизеров

Постоянный рост цен на энергоносители позволил по-новому подойти к электролитическим процессам. Разработаны различные типы установок для получения:

  • алюминия;
  • хлора;
  • водорода для плазменных аппаратов резки и сварки.

Также устройства работают в составе агрегатов, производящих очистку, обеззараживание питьевой воды и воды для бассейнов, как добавка к топливу для авто, позволяющая полностью использовать потенциал углеводородов. Водород горит значительно раньше бензина. Бензин воспламеняется уже не от искры, а от пламени, что повышает усилие, давящее на поршень двигателя машины.

Некоторые умельцы используют электролиз воды в домашних условиях для обогрева помещений. Но здесь стоит отметить, что себестоимость полученного горючего водорода значительно превосходит по цене тот же природный газ. К тому же температура горения водорода довольно высокая и не всякий металл способен выдержать длительное воздействие без разрушения. А использование термостойких материалов экономически не оправдано.

Виды агрегатов

Различный подход к проблеме позволил создать множество типов электролизеров, среди которых:

  • сухой;
  • мокрый;
  • проточный;
  • мембранный;
  • диафрагменный;
  • щелочной.

В сухих моделях используется набор плоских электродов для подключения высоковольтного блока питания. А связано это с тем, что подаваемое питание на один анод и катод составляет не более 2 В. В автомастерской много аккумуляторов напряжением 12 В, поэтому самодельное устройство может иметь по 6 электродов. Собранная конструкция помещена в герметично закрытую емкость.

В отличие от сухого типа мокрая модель электролизера отличается открытой емкостью. Из-за чего возникает необходимость в постоянном контроле уровня электролита.

Проточный вариант отличается тем, что выделение водорода происходит в отдельной емкости. После чего раствор возвращается в основную емкость с установленными электродными парами.

Мембранный тип отличается тем, что роль электролита выполняет мембрана — твердый электролит. Мембрана выполняет два назначения. Первое — перенос ионов. Второе — отделение продуктов электрохимической реакции на физическом уровне.

Диафрагменный тип аппаратов применяется в том случае, когда не допускается диффузия элементов. Для изготовления пористой диафрагмы используют:

  • керамику;
  • асбест;
  • стекло;
  • полимерную ткань;
  • стеклянную вату.

Прибор, работающий на щелочном растворе предпочтительнее, так как из соляных растворов в процессе реакции происходит выделение хлора, который считается отравляющим веществом.

Щелочную добавку вводят из-за невозможности проведения процесса в дистиллированной воде. Разложения не происходит из-за отсутствия разно заряженных ионов.

Электролизер своими руками

Электролизер для получения водорода своими руками сделать вполне возможно. Перед началом изготовления прибора необходима схема электролизера. Их встречается на просторах интернета большое количество, и подобрать необходимую не составит труда. На основании выбранной схемы разрабатываются чертежи электролизера своими руками.

Затем необходимо подобрать материалы для изготовления элементов. Наилучшим вариантом для изготовления пластин является нержавеющая сталь марки 03Х16Н15М3. маркировка по иностранным стандартам AISI 316 L. Она устойчива к коррозии от воздействия воды и щелочей.

Необходимо изготовить детали в количестве 16 штук. Их можно разместить на стальном квадрате 500×500 мм. Разметив, их можно вырезать ножницами по металлу, если позволит толщина металла, или болгаркой.

На каждом элементе необходимо отрезать один угол, а с противоположной стороны просверлить отверстие, диаметр которого должен совпадать с диаметром соединительного болта.

Сборка пакета пластин производится в следующей последовательности: положительная — отрицательная — положительная — отрицательная и так далее. Эта последовательность обеспечивает высокую плотность тока.

Изолирование пластин между собой производится не проводящей электричество поливинилхлоридной или силиконовой трубкой. Она разрезается вдоль, а ее толщина составляет 1 мм. Затем из нее нарезаются квадратики и сверлятся отверстия. Зазора в один миллиметр вполне достаточно для интенсивного производства газа.

Собранную конструкцию помещают в пластиковый контейнер необходимого объема с герметично закрывающейся крышкой. Если длинные винты не дают ровно установиться их следует отпилить, а гайки надежно затянуть. В крышке сверлятся отверстия, в которых закрепляются штуцера. Для обеспечения герметичности используется силиконовый герметик.

Перед подключением источника питания требуется провести расчет подаваемого напряжения. Его значение пропорционально площади и количеству пластин. Во время пробного запуска при недостаточной мощности заметно движение жидкости. В дальнейшем для перехода в рабочие режимы следует постепенно повышать мощность.

При отсутствии источника постоянного тока можно самостоятельно сделать схему мощного выпрямителя. Для этого понадобятся:

  1. резисторы, кОм — 2,7, 3, 10, 15, 30;
  2. диоды — Д232, Д226Б, Д814Б;
  3. транзисторы — МП26Б, П308;
  4. конденсатор, мкФ — 0,5;
  5. тиристор — КУ202Н;
  6. резистор переменный, кОм — 3…22;
  7. амперметр.

В заключение стоит отметить, что электролиз в домашних условиях — это доступный способ получать для дома и автомобиля водородный топливный ингредиент. Подключение самодельной установки не вызывает трудностей. Работать она может от постоянного тока и от переменного, но через выпрямитель.

Оцените статью: Поделитесь с друзьями!

elektro.guru

Монополярно-биполярный электролизер для получения смеси водорода и кислорода

Изобретение относится к газопламенной обработке материалов водородно-кислородной смесью, в частности к электролизерам для получения смеси водорода и кислорода. В электролизере Электролизер может быть фильтр-прессным или ящичным, при этом часть его электродов - монополярные, а часть - биполярные. Электролизер состоит из плоских или фигурных параллельных электродов с отверстиями или пазами для прохода газа и электролита. Пространство между электродами заполнено электролитом, и к крайним электродам подведен электрический ток. Электроды соединены между собой токоведущими шинами в блоки, два крайних из которых содержат по n+1, а остальные - по 2n+1 электродов, где n - натуральное число. При этом средние электроды каждого блока с 2n+1 электродами размещены в зазоре между двумя смежными блоками, а остальные 2n электродов этого блока - в середине зазоров между электродами смежных блоков, не контактируя с их токоведущими шинами. Технический результат заключается в многократном уменьшении площади (диаметра) каждого отдельного электрода в электролизерах, рассчитанных на токи порядка 100 А и более. 1 ил.

 

Изобретение относится к газопламенной обработке материалов водородно-кислородным пламенем с получением водородно-кислородной смеси электролизом воды непосредственно на месте сварки.

Современные электролизеры подразделяют на монополярные и биполярные по схеме подключения электродов к источнику питания (Якименко Л.М., Модылевская И.А., Ткачек З.А. Электролиз воды. М.: Химия, 1970 г., 263 с.). В монополярных электролизерах все электроды-аноды присоединены к одной общей токоведущей шине, а все электроды-катоды - к другой. Поэтому такой электролизер представляет собой, в сущности, одну электролизную ячейку, каждый из электродов которой состоит из нескольких элементов, включенных параллельно в цепь тока. Биполярные электролизеры состоят из большого количества ячеек, включенных последовательно в цепь тока, причем одна сторона каждого электрода, за исключением двух крайних, к которым подключен источник питания, является катодом одной ячейки, другая - анодом соседней ячейки.

Электролизеры, предназначенные для общепромышленного применения, должны давать не менее 1,5 куб. м смеси в час. Монополярный электролизер потребляет около 1600 А на каждый кубометр водородно-кислородной смеси в час. Следовательно, монополярный электролизер, предназначенный для общепромышленного применения, потребляет не менее 2400 А. При таком токе электролизеру необходимы массивные токоподводы и тяжелый источник питания, что делает его неприемлемо громоздким для использования в составе электролизно-водного генератора (термин «электролизно-водный генератор» - по ГОСТ 2601-84, термин №160). Биполярные электролизеры потребляют сравнительно небольшой ток, но высокого напряжения. Отсюда повышенные требования к изоляции электродов и утечка тока в обход электродов (через отверстия в них и неплотности между электродом и корпусом электролизера). Энергия тока утечки расходуется только на нагрев электролита, а не на образование водороднокислородной смеси.

В крупных электрохимических цехах, например, в производстве меди, где имеется много электролизеров, используют параллельно-последовательное включение монополярных электродов, когда несколько монополярных электролизеров (электролизных ванн) соединяют последовательно (Прикладная электрохимия / Учебник для вузов под ред. А.П.Томилова. М.: Химия, 1984. Стр.38-39). При этом каждый электролизер установлен в отдельном корпусе или отделен от другого электролизера общей для них диэлектрической стенкой. Применительно к электролизно-водным генераторам реализация и этой схемы подключения делает электролизер неприемлемо громоздким.

Предлагается электролизер для получения водородно-кислородной смеси, в котором большинство электродов - монополярные, а остальные - биполярные. Электролизер может быть фильтр-прессным или ящичным и содержит плоские или рельефные параллельные электроды с отверстиями или пазами для прохода газа и электролита. Зазоры между электродами одинаковы и заполнены электролитом, а к крайним электродам подведен электрический ток. Электроды соединены между собой токоведущими шинами в блоки, два крайних из которых содержат по n+1, остальные - по 2n+1 электродов, где n - натуральное число. При этом средний электрод каждого блока с 2n+1 электродами размещен между двумя смежными блоками электродов, а остальные 2n этого блока - в середине зазоров между электродами смежных блоков, не соприкасаясь с их токоведущими шинами.

В результате средние электроды блоков с 2n+1 электродами являются биполярными, все остальные - монополярными, а электролизер в целом представляет собой последовательно соединенные монополярные электролизеры, в каждом из которых 2n+1 электролизных ячеек. Перегородками, отделяющими каждый такой монополярный электролизер от смежных, являются биполярные электроды.

Число блоков электродов выбирают сообразно напряжению источника питания электролизера, а число электродов в блоке - по току, на который рассчитывают электролизер.

Схематическое изображение описываемого электролизера для n=2 и семи блоков с 2n+1 электродами изображено на чертеже.

Как видно из чертежа, электролизер содержит пакет электродов 1 с электролитом 2 между ними. К крайним электродам подключены токоподводы 3 и 4. Электролизер может быть фильтр-прессным или ящичным. В электродах имеются отверстия или пазы для прохода газа и электролита (на чертеже не показаны). Электроды в пакете могут быть плоскими или рельефными в них. Электроды соединены токоведущими шинами 5 в блоки I-IX. Два крайних блока (I и IX) содержат по 3 электрода, остальные - по 5 электродов. Средние электроды блоков II-VIII являются биполярными и делят пакет электродов на восемь последовательно соединенных монополярных электролизеров по 5 ячеек в каждом (границы монополярных электролизеров показаны на чертеже пунктиром).

Технический эффект предложенного изобретения - многократное уменьшение площади (диаметра) каждого отдельного электрода в электролизерах, рассчитанных на токи порядка 100 А и более, что, в свою очередь,

1) облегчает обеспечение безопасности электролизеров для получения водородно-кислородной смеси, как сосудов, работающих под давлением,

2) позволяет сделать электролизеры производительностью 1500 литров/час и более водородно-кислородной смеси столь компактными, что «Правила проектирования и эксплуатации сосудов, работающих под давлением» не распространяются на них,

3) значительно сокращает выделение тепла по сравнению с биполярными электролизерами с таким же числом ячеек, так как потери тока на утечку в обход электродов при прочих равных сокращаются в 2n+1 раз,

4) позволяет облегчить циркуляцию электролита через электролизер, так как в монополярных электродах увеличение площади отверстий для протекания электролита не приводит к росту потерь тока и тепловыделения за счет утечки тока в обход электродов.

В соответствии с предложенным, были изготовлены электролизеры для получения водородно-кислородной смеси мощностью 3,0, 7,5 и 15,0 кВА. Испытания этих электролизеров подтвердили работоспособность питания электродов по предложенной схеме и все изложенные выше преимущества такого питания. В частности, тепловыделение сократилось в несколько раз по сравнению с тепловыделением биполярных электролизеров такой же производительности по водородно-кислородной смеси.

Электролизер для получения водородно-кислородной смеси фильтр-прессного или ящичного типа, содержащий пакет параллельных электродов, выполненных плоскими или рельефными с отверстиями или пазами для прохода газа и электролита, электролит в межэлектродном пространстве и токоподводы к крайним электродам, отличающийся тем, что электроды соединены между собой токоведущими шинами в блоки, два крайних из которых содержат по n+1 электродов, а остальные - по 2n+1 электродов, где n - натуральное число, при этом средние электроды каждого блока с 2n+1 электродами размещены в зазоре между смежными блоками, а остальные 2n электродов этого блока - в середине зазоров между электродами двух смежных блоков, без контакта с их токоведущими шинами, причем средние электроды блоков c 2n+1 электродами являются биполярными, а остальные электроды - монополярными.

www.findpatent.ru

Электролизер для получения водорода и кислорода из воды

Изобретение относится к электролизеру для получения водорода и кислорода из воды, состоящему из корпуса с размещенными в нем катодом в виде полого цилиндра из пористого гидрофобизированного материала и анодом в виде трубы из металла, находящегося между ними сепаратора в виде газозапорной мембраны, с образованием катодной газовой полости между внешней стенкой катода и внутренней стенкой корпуса, анодной полости внутри анода, с нанесенными на поверхность анода и поверхность катода катализатором. Электролизер характеризуется тем, что анод выполнен из перфорированного металлического листа с присоединенной по его наружной поверхности металлической сеткой с нанесенным на нее катализатором, катод изготовлен из пористого гидрофобизированного материала с нанесенным на его наружную поверхность со стороны водородной полости катализатором, а с внутренней стороны с присоединенной к нему сеткой с нанесенным на нее катализатором, сепаратор состоит из газозапорной мембраны из пористого гидрофильного материала, окруженной с обеих сторон одним или несколькими слоями сепарационного материала, герметизация полости водорода относительно полости кислорода осуществляется при сборке электролизера как за счет фланцев, выполненных из электроизоляционного материала и имеющих кольцевые канавки с прокладками для создания уплотнения по торцам катода в местах соприкосновения с фланцами, так и за счет обжатия при сборке электролизера верхнего и нижнего концов сепаратора, выступающих за пределы анода и сеток, присоединенных к катоду и аноду, между внешними концевыми конусообразными поверхностями соответствующих фланцев и соответствующими внутренними концевыми конусообразными поверхностями катода. Использование предлагаемого устройства позволяет минимизировать энергетические затраты на собственные нужды и, как следствие, повысить КПД заявляемого электролизера, повысить надежность работы электролизера и чистоту вырабатываемых газов. 8 з.п. ф-лы, 3 ил.

 

Предлагаемое техническое решение относится к технологии электрохимических производств, а именно к устройствам для получения водорода и кислорода методом электролиза воды.

Известна конструкция электролизера по патенту США на изобретение №7510633 (класс МПК С25В 1/10, дата приоритета 21.02.2003 г.) [1] для получения водорода и кислорода, который состоит из катода трубчатой формы, анода в виде стержня, мембраны, анодной и катодной полостей, водородного и кислородного коллектора, насоса для электролита. Катодная и анодная полости содержат электролит.

Данный электролизер работает следующим образом. Раствор электролита перед началом работы подается в анодную и катодную полости ячейки, между которыми установлена мембрана. Затем на анод и катод электролизера подается постоянный ток. Циркуляция электролита в анодной и катодной полостях осуществляется с помощью насоса. Образовавшиеся на электродах во время работы электролизера газовые пузыри вместе с электролитом через газовые каналы покидают ячейку. Затем в кислородной и водородной емкостях газ отделяется от электролита, поступает в баллоны или в иную емкость, а электролит собирается в одну общую емкость и используется с помощью насоса в системе циркуляции электролита при дальнейшей работе электролизера.

Недостатки данного устройства следующие:

- использование в конструкции электролизера общего электролитного коллектора, заполненного электролитом, снижает производительность установки в целом, так как в этом случае возникают высокие токи утечки;

- наличие расстояния между электродами (за счет анодной и катодной полостей), приводит к росту электрического сопротивления и возникновению излишних энергетических затрат, что увеличивает потребляемую мощность и снижает производительность в целом всего устройства;

- в данной конструкции электролизера необходимо наличие дополнительного устройства для отделения водорода от щелочи;

- в данной конструкции электролизера необходим насос для циркуляции электролита через анодную и катодную полости.

Известен электролизер по патенту РФ на изобретение №2400566 (класс МПК С25В 9/00, дата приоритета 24.08.2009, дата публикации 27.09.2010) [2]. Электролизер содержит герметичный корпус-анод цилиндрической формы, катод, диэлектрическими прокладками с двух сторон закрепленный в полости корпуса-анода. Патрубки для ввода электролита (водного раствора электролита) и вывода газа. При этом катод выполнен в виде перфорированного цилиндра и закреплен в нем диэлектрическими перфорированными прокладками концентрично корпусу-аноду. Патрубок для ввода электролита выполнен в виде диффузора с возможностью постоянно циркулирующей подачи электролита насосом и распыления форсункой из бака в корпус-анод, донная часть которого переливной трубкой с обратным клапаном сообщена с баком. Патрубок для вывода газа снабжен каплеулавливателем.

В патенте РФ на изобретение №2441944 «Электролизер» (класс МПК С25В 9/00, дата приоритета 17.02.2011, дата публикации 10.02.2011) [3] описан электролизер для получения кислорода и водорода.

Работа электролизера осуществляется следующим образом. Бак электролизера заправляют электролитом, а на его электроды - анод и катод, разделенные диафрагмой, подают регулируемый блоком управления постоянный ток. Насосом из электролитного бака электролит через дозирующее устройство в постоянном режиме подается и распыляется через форсунку в патрубок-диффузор. В патрубке-диффузоре за счет того, что он распыляется форсункой в виде тумана от нижней диэлектрической перфорированной вставки распыляется вертикально вверх и поступает в перфорированный цилиндр-катод, что дает возможность контактировать электролиту со всей поверхностью электродов электролизера, при этом присутствующая в электролите вода разлагается на кислород и водород. Диафрагма, проницаемая для ионов, но препятствующая смешиванию кислорода и водорода, отделяет катодную полость электролизера от анодной полости. Полученные в результате электролиза кислород и водород проходят через верхнюю перфорированную вставку, каждый по своей части вставки в каплеотделителе, очищается от капель электролита и через соответствующие патрубки с отсекателями подводятся потребителю. Сконденсировавшийся в донной части полости корпуса-анода электролит по переливной трубке с обратным клапаном сливается в электролитный бак и используется повторно.

Недостатками электролизеров по патентам РФ на изобретения №400566 и 2441944 является то, что в данных конструкциях электролизеров:

- требуется наличие постоянно работающего щелочного насоса для распыления через форсунку электролита в зону электролиза воды, что создает дополнительные энергетические затраты и не обеспечивает равномерность работы электролизного элемента по всей площади, что в свою очередь снижает его КПД всего электролизера;

- использование постоянно работающего механического узла (насоса) снижает надежность электролизной установки;

- применение узла каплеотделения, обоснованное необходимостью получать в результате работы устройства кислород и водород, очищенные от электролита.

Известен электролизер по патенту РФ на изобретение №2501890 «Электролизер для получения водорода и кислорода из воды» (класс МПК С25В 9/10, С25В 1/10, дата приоритета 11.05.2012, дата публикации 20.12.2013) [4], наиболее близкий к предлагаемому техническому решению и потому принятый за прототип.

Данный электролизер состоит из корпуса и размещенных в нем соединенных последовательно между собой ячеек. Анод каждой из ячеек выполнен в виде трубы из сетчатого материала, а катод - в виде полого цилиндра из пористого гидрофобизированного материала. Анод и катод каждой из ячеек размещены вплотную к газозапорной мембране с образованием катодной газовой полости между внешней стороной катодов и корпусом. Катодная газовая полость соединена с емкостью гидрозатвора, емкостью щелочного электролита и устройством для отделения водорода от паров воды и щелочи. Ячейки соединены анодными полостями с теплообменником и с емкостью щелочного электролита, которая, в свою очередь, соединена с устройством для отделения кислорода от паров воды и щелочи и системой подачи воды. На поверхность анода и внутреннюю поверхность катода ячеек нанесены катализаторы. В качестве материала катода ячеек использован пористый гидрофобизированный никель. Анод может быть выполнен из никелевой сетки.

Недостатком электролизера данной конструкции является то, что:

- в конструкции электролизера используется несколько электролизных элементов, что создает необходимость последовательной герметизации газовых полостей электролизной установки;

- наличие в контуре анода теплообменника;

- необходимость использования устройства для отделения газов от паров воды и щелочи;

- наличие насоса для циркуляции электролита в анодной полости.

Задачами предлагаемой конструкции электролизера для получения водорода и кислорода из воды являются минимизация энергетических затрат на собственные нужды и, как следствие, повышение КПД предлагаемого электролизера, повышение надежности работы электролизера и чистоты вырабатываемых газов.

Поставленные задачи решаются за счет того, что в предлагаемом электролизере для получения кислорода и водорода, состоящем из корпуса с размещенными в нем катодом в виде полого цилиндра из пористого гидрофобизированного материала и анодом в виде трубы, вплотную размещенным между ними сепаратором из газозапорной мембраны, с образованием катодной газовой полости между внешней стенкой катода и внутренней стенкой корпуса, анодной полости внутри анода, с нанесенными на поверхность анода и поверхность катода катализаторами, согласно предлагаемому техническому решению анод выполнен из перфорированного металлического листа с присоединенной по всей наружной поверхности трубы металлической сеткой с нанесенным на нее катализатором, катод изготовлен из пористого гидрофобизированного материала с нанесенным на его наружную поверхность со стороны водородной полости катализатором, а с внутренней стороны с присоединенной к нему сеткой с нанесенным на нее катализатором, сепаратор состоит из газозапорной мембраны из пористого гидрофильного материала, окруженного с обеих сторон одним или несколькими слоями сепарационного материала, герметизация полости водорода относительно полости кислорода осуществляется при сборке электролизера как за счет фланцев, выполненных из электроизоляционного материала и имеющих кольцевые канавки с прокладками для создания уплотнения по торцам катода в местах соприкосновения с фланцами, так и за счет обжатия (уплотнения) при сборке электролизера верхнего и нижнего концов сепаратора, выступающих за пределы анода и сеток, присоединенных к катоду и аноду, между концевыми конусообразными поверхностями соответствующих фланцев и соответствующими концевыми конусообразными поверхностями катода.

Конструкция предлагаемого электролизера для получения водорода и кислорода из воды характеризуется фиг. 1 - общий вид электролизера в разрезе, фиг. 2 - увеличенный вид в разрезе кислородной, водородной полостей и корпуса электролизера (вид А), фиг. 3 - увеличенный вид элемента уплотнения между кислородной и водородной полостями (вид Б).

Электролизер для получения водорода и кислорода из воды предлагаемой конструкции, показанный на фиг. 1, состоит из корпуса (1), например цилиндрического, внутри которого находятся полости водорода (2) и кислорода (3). Полость водорода (2) организована между внутренней стенкой корпуса (1) и внешней стенкой катода (4).

Катод (4) представляет собой полый цилиндр из пористого гидрофобизированного материала, например пористого спеченного никеля, с нанесенным на его поверхность с внешней стороны (со стороны водородной полости) катализатором, а к внутренней стороне цилиндра присоединена, например припечена, сетка, например никелевая, с нанесенным на сетку катализатором.

Кислородная полость (3) образована внутри анода (5), выполненного в виде перфорированной металлической трубы, например, в виде цилиндра с присоединенной, например припеченной, к ней с наружной стороны сеткой, например никелевой, с нанесенным на нее катализатором.

По всей площади внутренней поверхности катода (4) и внешней поверхности анода (5), между ними и вплотную к ним, размещен сепаратор (6), состоящий из газозапорной мембраны из пористого гидрофильного материала и прилегающего к газозапорной мембране с двух сторон сепарационного материала, например, в виде одного или более слоев пленки из полимерного микропористого материала.

Внизу корпуса (1) предлагаемого электролизера расположен нижний изоляционный фланец (7) со штуцером подвода водного раствора электролита (8). Штуцер отвода электролита (9), попавшего в водородную полость, и образовавшейся воды находится внизу водородной полости электролизера. Для герметизации изоляционного фланца (7) используются уплотняющие прокладки (10), например кольцевые. Для герметизации штуцера подвода водного раствора электролита (8) используются уплотняющие прокладки (11), например кольцевые.

Сбоку на корпусе (1) электролизера находится штуцер для отвода водорода (12), произведенного в результате работы электролизера, уплотнение которого осуществляется с помощью уплотняющих прокладок (13), например кольцевых.

Кроме этого, например, с боку предлагаемый электролизер имеет токоввод «минус» (14), контактирующий со стенкой катода (4) при помощи токоподводящей пластины (15), например никелевой, которая приварена к катоду. Токоввод «минус» изолирован от корпуса (1) электролизера с помощью втулок (16) из электроизоляционного материала и уплотняющих прокладок (17), например кольцевых.

В верхней части электролизера находится верхний изоляционный фланец (18), уплотненный относительно находящегося поверх него металлического фланца (19) с помощью уплотняющих прокладок (20), например кольцевых. В свою очередь металлический фланец (19) уплотнен относительно внутренней стенки корпуса (1) электролизера при помощи прокладок (21), например кольцевых, и накидной гайки (22).

В верхнем изоляционном фланце (18) расположены штуцер (23) для циркуляции электролита и отвода кислорода, получившегося в результате работы электролизера, который уплотнен с помощью уплотняющих прокладок (24), например кольцевых. Кроме того, в нем расположен токоввод «плюс» (25), контактирующий со стенкой анода с помощью токоподводящей пластины (26), уплотнение которого осуществляется с помощью прокладок (27), например кольцевых.

На виде А (фиг. 2) показан в увеличенном виде фрагмент разреза кислородной, водородной полостей, находящегося между ними сепаратора и корпуса электролизера.

Полость водорода (2) находится между внутренней поверхностью (28) корпуса (1) и внешней стенкой катода (4). Катод (4) состоит из пористого полого цилиндра (29) из гидрофобизированного материала, нанесенного на пористый полый цилиндр (29) со стороны водородной полости слоя катализатора (30) и присоединенной с противоположной поверхности пористого полого цилиндра (29) сетки (31) с нанесенным на нее катализатором.

Кислородная полость (3) образована внутри анода (5), выполненного в виде перфорированной металлической трубы с присоединенной к ее наружной поверхности сеткой с катализатором (32).

Между катодом (4) и анодом (5) по всей площади их поверхностей вплотную к ним размещен сепаратор (6), состоящий из газозапорной мембраны из пористого гидрофильного материала (33) и прилегающего к газозапорной мембране с двух сторон сепарационного материала (34), например, в виде одного или нескольких слоев пленки из полимерного микропористого материала.

На фиг. 3 изображен увеличенный фрагмент уплотнения между водородной полостью (2) и кислородной полостью (3) в предлагаемом электролизере (вид Б).

Уплотнение между водородной (2) и кислородной (3) полостями предлагаемого электролизера, исключающее перетечку кислорода из кислородной полости в водородную полость и наоборот организовано следующим образом.

Нижний изоляционный фланец (7) имеет кольцевую канавку (35), в которой при сборке электролизера размещается кольцевая уплотнительная прокладка (36). Внешняя поверхность (37) на конце нижнего изоляционного фланца (7) выполнена конусообразной, например, под углом от 5° до 20°. Внутренняя поверхность (38) на конце катода (4) выполнена также конусообразной, например, под углом от 5° до 20°. Сепаратор (6) имеет такую длину, что его концы вверху и внизу выступают за пределы анода (5) и сеток (31 и 32).

Герметизация водородной полости относительно кислородной полости в предлагаемой конструкции электролизера при его сборке, например, в нижней части электролизера осуществляется следующим образом:

- во-первых, за счет обжатия нижнего конца (39) сепаратора (6) в зазоре между внешней конусообразной поверхностью (37) нижнего изоляционного фланца (7) и соответствующей внутренней конусообразной поверхностью (38) нижней части катода (4), так как при сборке электролизера нижний конец сепаратора расположен в зазоре между ними и при сборке электролизера сжимается между ними.

- во-вторых, по торцу катода (4) за счет сжатия им при сборке электролизера прокладки (36), находящейся в кольцевой канавке (35) нижнего изоляционного фланца (7).

Аналогично герметизация водородной полости электролизера относительно кислородной полости организована и в верхней части электролизера между верхним изоляционным фланцем (18), верхним концом сепаратора (6) и верхней частью катода (4).

Пример конкретного применения.

Электролизер для получения водорода и кислорода из воды предлагаемой конструкции состоял из металлического корпуса (1) из нержавеющей стали 12Х18Н10Т (ГОСТ 5632-72) [5]; катода (4) в виде полого цилиндра из спеченного пористого никеля марки НП2 (ГОСТ 492-73) [6] гидрофобизированного [7] фторопластом марки Ф-4Д (ТУ 6-05-1246-81), на наружную сторону которого нанесен платинородиевый катализатор (30), а к его внутренней стенке припечена сетка (31) из никеля марки НП2 с нанесенным на нее платинородиевым катализатором; анода (5), выполненного из перфорированного никелевого листа, марка материала листа НП2 в виде цилиндра с припеченной к нему сеткой (32) из никеля марки НП2 с нанесенным на нее платинородиевым катализатором; сепаратора (6), состоящего из газозапорной мембраны (33) из пористого гидрофильного материала, а именно асбеста (еК0.023.709 ТУ) [8], и прилегающего к газозапорной мембране (33) с двух сторон сепарационного материала (34), уложенного в два слоя из пленки полипропиленовой микропористой ПОРП-А1-22-114 (ТУ 6-00001-94) [9].

Нижний (7) и верхний (18) изоляционные фланцы выполнены из фторопласта марки 4-С (ГОСТ 10007-80) [10]. Уплотнительные прокладки в виде колец выполнены из смеси резиновой РП-2043 (ТУ 38.005924-2002) [11].

Внешняя поверхность (37) на конце нижнего изоляционного фланца (7) была выполнена конусообразной под углом 10°, аналогично была выполнена внешняя поверхность на конце верхнего изоляционного фланца (18). Внутренняя поверхность (38) на обоих концах катода (4) выполнена также конусообразной под углом от 10°. Изоляция водородной полости (2) от кислородной полости (3) осуществлялась при сборке электролизера описанным выше способом.

Работа предлагаемого электролизера для получения водорода и кислорода из воды осуществляется следующим образом.

На электролизер подается напряжение 2,4 В, при этом сила постоянного тока составляет ≈38 А.

Электролит, водный семи нормальный раствор КОН поступает снизу, через штуцер подвода водного раствора электролита (8) в кислородную (анодную) полость (3) и заполняет ее полностью. При подаче напряжения на токовводы «минус» (14) и «плюс» (25) происходит электролиз воды, находящейся в электролите. В кислородной полости (3) на аноде (5) выделяется кислород, а на внутренней стороне катода (4) - водород, который, проходя через пористый гидрофобизированный полый цилиндр (29) катода (4), попадает в водородную полость (2) и удаляется из нее через штуцер для отвода водорода (12). Поскольку катод (4) гидрофобизирован щелочь практически не проходит в водородную полость. Электролит, который может иногда просачиваться в полость водорода (2) через гидрофобизированный полый пористый цилиндр (29) катода (4), удаляется из нее через штуцер отвода электролита (9).

Выделившийся на аноде кислород через штуцер для циркуляции электролита и отвода кислорода (23) удаляется из электролизера.

Сепаратор (6) обладает газозапорными свойствами, т.е. в замоченном состоянии он не пропускает сквозь себя газы. Газозапорные свойства сепаратора таковы, что он непроходим для газов при давлении до 0,4 МПа и благодаря этим свойствам получающийся кислород не проникает сквозь него в полость водорода (2).

С целью обеспечения безопасности работы электролизера и получения более чистого водорода катод (4) с наружной стороны покрыт катализатором, на котором, в случае проникновения ничтожного количества кислорода через катод, он вступает в реакцию с водородом на поверхности катализатора, образовавшееся при этом вода вместе с избытками щелочи удаляется через штуцер отвода электролита (9).

Использование в предлагаемой конструкции электролизера анода (5), выполненного из листа металла с перфорацией по всей его площади и свернутого в цилиндр при сборке электролизера, позволяет за счет упругих свойств материала цилиндра плотно соединить (прижать) между собой катод (4), сепаратор (6) и анод (5) для снижения омических потерь, что приводит к увеличению КПД электролизера.

В результате работы электролизера предлагаемой конструкции был получен водород с чистотой выше 99,99%.

Использование предлагаемого технического решения позволяет:

- минимизировать энергетические затраты на работу электролизера и, как следствие, повысить КПД установки;

- способ изготовления анода и катода, а также способ их герметизации позволяет получать рабочие газы повышенного давления без применения устройств сжатия газа;

- максимально поднять КПД электролизного элемента за счет изменения конструкции анода и катода.

- повысить безопасность за счет использования сепарационных материалов и применения катализатора на наружной поверхности катода;

- повысить чистоту выделяемых газов.

Источники информации

1. Патент США на изобретение №7510633.

2. Патент РФ на изобретение №2400566 «Электролизер».

3. Патент РФ на изобретение №2441944 «Электролизер».

4. Патент РФ на изобретение №2501890 «Электролизер для получения водорода и кислорода из воды».

5. ГОСТ 5632-72 «Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные».

6. ГОСТ 492-73 «Никель, сплавы никелевые и медно-никелевые, обрабатываемые давлением».

7. ТУ 6-05-1246-81 «Суспензии фторопластовые Ф-4Д, Ф-4ДВ».

8. еК0.023.709 ТУ «Волокно асбестовое».

9. ТУ 6-00001-94.

10. ГОСТ 10007-80 «Фторопласт-4. Технические условия».

11. ТУ 38.005924-2002 «Смеси резиновые специальные».

1. Электролизер для получения водорода и кислорода из воды, состоящий из корпуса с размещенными в нем катодом в виде полого цилиндра из пористого гидрофобизированного материала и анодом в виде трубы из металла, находящегося между ними сепаратора в виде газозапорной мембраны, с образованием катодной газовой полости между внешней стенкой катода и внутренней стенкой корпуса, анодной полости внутри анода, с нанесенными на поверхность анода и поверхность катода катализатором, отличающийся тем, что анод выполнен из перфорированного металлического листа с присоединенной по его наружной поверхности металлической сеткой с нанесенным на нее катализатором, катод изготовлен из пористого гидрофобизированного материала с нанесенным на его наружную поверхность со стороны водородной полости катализатором, а с внутренней стороны с присоединенной к нему сеткой с нанесенным на нее катализатором, сепаратор состоит из газозапорной мембраны из пористого гидрофильного материала, окруженной с обеих сторон одним или несколькими слоями сепарационного материала, герметизация полости водорода относительно полости кислорода осуществляется при сборке электролизера как за счет фланцев, выполненных из электроизоляционного материала и имеющих кольцевые канавки с прокладками для создания уплотнения по торцам катода в местах соприкосновения с фланцами, так и за счет обжатия при сборке электролизера верхнего и нижнего концов сепаратора, выступающих за пределы анода и сеток, присоединенных к катоду и аноду, между внешними концевыми конусообразными поверхностями соответствующих фланцев и соответствующими внутренними концевыми конусообразными поверхностями катода.

2. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что внешняя поверхность на концах нижнего и верхнего изоляционных фланцев выполнена конусообразной под углом от 5 до 20°.

3. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что внутренние поверхности на обоих концах катода выполнены конусообразными под углом от 5 до 20°.

4. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что корпус и анод выполнены из нержавеющей стали марки 12Х18Н10Т.

5. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что катод выполнен из спеченного пористого никеля марки НП2.

6. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что в качестве катализатора используется платинородиевый катализатор.

7. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что используется сетка никелевая марки НП2.

8. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что газозапорная мембрана состоит из асбеста.

9. Электролизер для получения водорода и кислорода из воды по п. 1, отличающийся тем, что в качестве сепарационного материала используется пленка полипропиленовая микропористая ПОРП-А1-22-114.

www.findpatent.ru

Способ регулирования давления в электролизере, электролизер для производства водорода и кислорода (варианты) и электролизер для получения водорода

 

Изобретение относится к способу регулирования давления в электролизере, который производит водород и кислород при разложении электролитической жидкости с помощью электрического тока, содержащем герметичную, работающую под давлением электролитическую ячейку для получения водорода и кислорода, водородную линию для отвода водорода из ячейки в водородный накопитель, кислородную линию для отвода кислорода из ячейки и средства подачи электролита в ячейку, при этом между давлением кислородной линии и давлением водородной линии поддерживают заданную разность давления при прохождении кислорода/водорода через один или более пружинных перепускных клапанов, причем давление в водородной линии подводят к пружинной стороне перепускного клапана. Кроме того, изобретение относится к электролизерам вышеуказанного назначения, а также электролизеру для получения водорода. 4 с. и 19 з.п. ф-лы, 6 ил.

Настоящее изобретение относится к способу регулирования давления в электролизере, производящем водород и кислород при разложении электролитической жидкости на водород и кислород с помощью электрического тока. Изобретение также относится к электролизеру для производства водорода в электролитической ячейке переменного давления при разложении электролитической жидкости с помощью электрического тока на водород и кислород.

Водород является идеальным и чистым источником энергии в специальных случаях применения, в которых имеются нетрадиционные источники энергии. Поэтому, например, в устройствах, использующих электроэнергию и расположенных в редконаселенных и труднодоступных районах, для производства электроэнергии могут быть использованы солнечные батареи. Такие установки часто не имеют персонала и требуют автоматического или дистанционного контроля. Такие установки также должны работать, когда нет солнечного света. Накопление электроэнергии только в аккумуляторах будет требовать очень большого числа аккумуляторов, особенно в северных широтах, причем указанные аккумуляторы являются тяжелыми и требующими ухода. Использование водорода для накопления энергии является одним из средств рекуперации излишка энергии, вырабатываемой солнечными батареями, поэтому вода разлагается на водород и кислород с помощью электричества. В таких случаях электроэнергия может при необходимости производиться с помощью топливных элементов из водорода. Для того, чтобы уменьшить размер требуемых водородных резервуаров, водород должен быть, однако, сжат под давлением, и для сжатия должна быть использована дополнительная энергия. В технике известно осуществление разложения воды на водород и кислород в электролизерах, работающих под давлением, с получением, таким образом, водорода непосредственно в сжатом виде, так что нет необходимости в отдельном выполнении сжатия. Недостатком создания давления в электролизере является, однако, увеличение утечек. В технике также известно помещение электролизера в отдельный кожух под давлением, поэтому разность давления внутри и снаружи электролизера значительно снижается и снижаются утечки. Так, в устройстве, как, например, в патентной публикации FP-2466515, кожух под давлением опрессовывается с помощью газообразного азота, и устройство содержит средства поддерживания давления в электролизере ниже, чем давление в кожухе под давлением. Использование отдельного опрессовывающего газа требует, однако, сосудов для опрессовывающих газов и необходимости пополнения опрессовывающего газа; система, рассмотренная в указанном патенте, является поэтому неприменимой, например, в устройствах, работающих автоматически от солнечной энергии в труднодоступных местностях. Из патента GB-1518234 известно, что электроды электролизера помещают внутри кожуха под давлением, поэтому внутри кожуха под давлением превалирует давление газообразного водорода. Помещенный в кожух под давлением герметичный электролизер, однако, не входит в устройство согласно указанному патенту, напротив, электроды, используемые в разложении электролита (HCI), размещаются подвешенными непосредственно в кожухе под давлением. Устройство, рассмотренное в указанном патенте, является устройством, предназначенным для крупномасштабного производства водорода, имеющего очень высокую потребность в энергии, сложную и дорогостоящую конструкцию, например, благодаря устройствам, требуемым для очистки, к тому же устройство не предназначено для регенерации кислорода. Однако создание давления в электролизере требует, чтобы разность давления между водородной стороной и кислородной стороной (т.е. водородной стороной и стороной подачи воды) не была слишком большой, поскольку большинство серийно выпускаемых электролизеров конструктивно не предназначено для работы с высокими разностями давления. Особенно электролизеры с переменным давлением и с использованием электроэнергии, получаемой с помощью солнечных батарей, требуют систем регулирования давления, которые осуществляют поддержание разности давления между водородной стороной и кислородной стороной соответствующей и достаточно малой. В известных в технике системах регулирование давления в основном осуществляется с использованием клапанов с электрическим управлением, которые потребляют электроэнергию и поэтому являются не очень пригодными для использования в системах, производящих водород автономно с помощью солнечных батарей. С помощью настоящего изобретения осуществляется способ регулирования давления в электролизере так, что разность давления между кислородной стороной и водородной стороной поддерживается при заданном значении механически, поэтому регулирование в системе с переменным давлением выполняется автоматически без потребления электроэнергии. Поэтому изобретение относится к способу регулирования давления в электролизере, который производит водород и кислород при разложении электролитической жидкости с помощью электрического тока и который содержит герметичный работающий под давлением электролизер для получения водорода и кислорода, водородную линию для отвода водорода из электролизера и водородный накопитель, кислородную линию для отвода кислорода из электролизера и средства подачи электролита в электролизер. Способ согласно изобретению отличается тем, что между давлением кислородной линии и давлением водородной линии поддерживают заданную разность давления направлением первого газообразного продукта, выводимого из системы, через один или более пружинных перепускных клапанов так, что давление, существующее в линии, содержащей второй газообразный продукт, подводят к пружинной стороне перепускного клапана. Электролитическая жидкость, подаваемая в электролизер, содержит воду, но может содержать любые вещества, способствующие работе используемого электролизера, такие как кислоты или основания. Термин "вода" относится к любой такой электролитической жидкости. В способе изобретения механическое, не потребляющее электроэнергию и автоматически управляемое регулирование давления осуществляется с применением традиционного перепускного клапана в модифицированном виде. Стандартный перепускной клапан содержит металлическую диафрагму, установленную в соответствующий корпус, которая при поджатии пружиной, помещенной под диафрагмой, прижимается к выходному отверстию газа или жидкости, таким образом закрывая его. Только когда давление газа или жидкости превышает поджатие пружины, поток может выходить из выходного отверстия. В способе изобретения для регулирования давления кислородной линии давление водородной линии подводят к пружинной стороне перепускного клапана, поэтому разность давления между давлениями кислородной линии и водородной линии поддерживают автоматически таким высоким, как степень поджатия пружины. Регулированием степени сжатия пружины может быть установлена требуемая разность давления. В то же самое время диафрагма перепускного клапана предохраняет газообразный кислород и газообразный водород от контакта между собой. Таким образом, в вышеописанном способе может быть предусмотрена система регулирования, работающая автоматически и без электроэнергии, в которой обеспечивается, чтобы давления кислородной стороны и водородной стороны автоматически соответствовали друг другу во всей зоне давления, которая может значительно изменяться в зависимости от изменения рабочего давления, определяемого давлением, существующим в любое данное время в водородном накопителе. Поддержание заданной, относительно небольшой разности давления между кислородной и водородной сторонами необходимо потому, что конструкция электролизера соответствует невысоким разностям давления. Особенно вместе с потоком кислорода выходят большие количества воды, которая в соответствии с традиционной технологией может быть отделена от газа с использованием сепараторов воды и направлена обратно в электролизер с помощью собственной силы тяжести. Вместе с потоком водорода выходят значительно меньшие количества воды, которая также может быть отделена от газообразного водорода в сепараторе воды. Вода, отделенная от газообразного водорода, может быть полностью выведена из системы или может быть возвращена в электролизер. Последняя указанная альтернатива, однако, требует, чтобы в сепараторе воды водородной стороны давление было более высоким, чем на кислородной стороне. В том случае, когда вода, отделенная от газообразного водорода, не регенерируется или не направляется непосредственно обратно в электролизер, давление в кислородной линии может поддерживаться более высоким, чем давление в водородной линии. Поэтому давление водородной линии подводится к пружинной стороне перепускного клапана в кислородной линии как таковое, поэтому сжатие пружины перепускного клапана способствует поддержанию давления в кислородной линии более высоким, чем давление водорода на величину сжатия пружины при выпуске избытка кислорода из системы. В том случае, когда желательно, чтобы вода, отделенная от газообразного водорода, была возвращена в электролизер, принимаются меры, чтобы, по крайней мере, относительно более высокое давление было в сепараторе воды водородной стороны по сравнению с кислородной стороной и аналогично этому на впускной стороне электролизера. Это может быть осуществлено тем, что давление водородной стороны не подводится как таковое к пружинной стороне перепускного клапана в кислородной линии, а является сниженным на заданную величину, причем эта величина является немного больше, чем поджатие пружины перепускного клапана. Указанное сниженное давление водорода может поэтому иметься, например, после обратного клапана, расположенного в водородной линии, причем обратный клапан снижает давление водородной линии на требуемую величину. Таким образом, обеспечивается, что давление в водородной линии поддерживается более высоким, чем в кислородной линии, и вода из сепаратора воды водородной стороны может быть возвращена, например, в сепаратор воды кислородной стороны и обратно в электролизер. В соответствии с предпочтительным вариантом способа изобретения давление водорода на пружинной стороне перепускного клапана кислородной линии может иметься необязательно либо до обратного клапана, либо сниженное после, поэтому выбор может быть выполнен, например, с помощью трехходового клапана. Последний способ принимается, когда давление после обратного клапана, т.е. давление водородного накопителя, ниже, чем давление водородной линии. Первый способ принимается, когда давление в водородной линии до обратного клапана является более низким, чем после обратного клапана, например, когда давление в устройстве для электролиза падает, а давление электролизера увеличивается до давления водородного накопителя. Трехходовой клапан может быть предпочтительно заменен также на использование другого перепускного клапана. Таким образом, пружинная сторона второго перепускного клапана соединяется с точкой в водородной линии, которая располагается после обратного клапана, и пружинная сторона второго перепускного клапана соединяется с водородной линией до обратного клапана. Настоящее изобретение содержит также электролизер для производства водорода и кислорода при разложении электролитической жидкости с помощью электрического тока с использованием вышеописанного способа регулирования давления. Электролизер согласно изобретению отличается тем, что содержит, по меньшей мере, следующие составные части: герметичный, работающий под давлением электролизер для получения водорода и кислорода с помощью электрического тока, водородную линию для отвода водорода из электролизера в водородный накопитель, кислородную линию для отвода кислорода из электролизера, средства подачи электролита в электролизер и средства поддержания заданной разности давления между давлением в линиях первого газообразного продукта и второго газообразного продукта, причем указанные средства содержат один или более перепускных клапанов, установленных в линии первого газообразного продукта, и средства подведения давления в линии второго газообразного продукта к пружинной стороне перепускного клапана. Фиг. 1 представляет электролизер, в котором давление газообразного кислорода поддерживается более высоким, чем давление газообразного водорода; фиг. 2 представляет такое же устройство, в котором давление газообразного водорода поддерживается более высоким, чем давление газообразного кислорода; фиг. 3 представляет модификацию устройства, показанного на фиг. 2, в котором трехходовой клапан заменен на другой перепускной клапан; фиг. 4 представляет электролизер, в котором давление водородной лини к пружинной стороне перепускного клапана передается гидравлически; фиг. 5 представляет электролизер, в котором жидкость в кожухе под давлением предохраняется от поступления в жидкой или парообразной форме в газовые циркуляции устройства; фиг. 6 представляет электролизер, который снабжен средствами безопасности для снижения давления водорода, если давление кислородной стороны будет падать по той или иной причине. Фиг. 1 представляет электролизер переменного давления 10, снабженный входным патрубком 11 для электролитической жидкости, выходным патрубком 12 для газообразного водорода, выходным патрубком 13 для газообразного кислорода (смесь кислород/вода) и токовыводами 14. В варианте, показанном на фиг. 1, также показаны сепараторы воды 15 и 16 для отделения воды от газообразного водорода и соответственно от газообразного кислорода. Электролитическая жидкость подается в электролизер 10 по водяной трубе 17, через насос 18 и водяную линию 19 в сепаратор воды 16 для газообразного кислорода и далее по линии подачи воды 20 через обратный клапан 21 и впускной патрубок 11 для электролитической жидкости в электролизер 10. Получаемый в электролизере кислород и захваченная им вода подводятся через кислородный выходной патрубок 13 и кислородную отводную линию 22 к сепаратору воды 16 кислорода. Вода, захваченная кислородным газом, отделяется в сепараторе воды 16, возвращаясь в электролизер 10 по линии 20 под действием собственной силы тяжести. Получаемый в электролизере 10 газообразный водород подводится через водородный выпускной патрубок 12 и водородную отводную линию 23 к сепаратору воды 15 газообразного водорода. Вода, отделенная от газа в сепараторе воды 15, выводится через трубу 24 и вентиль 25. В устройстве согласно фиг. 1, кроме того, применена система давления кожуха, причем указанная система поддерживается под давлением с помощью давления газообразного кислорода. Так, на фиг. 1 представлен кожух под давлением 26, в который помещен электролизер 10. Кожух под давлением 26 предпочтительно заполняется инертной жидкостью, и создание давления осуществляется преимущественно подведением трубы 27 в кожух под давлением 26 от сепаратора воды 16 газообразного кислорода. Поэтому в кожухе под давлением 26 создается давление газообразного кислорода. Необходимо отметить, однако, что при рассмотрении изобретения применение кожуха под давлением не является всегда необходимым. Газообразный водород из сепаратора воды 15 подводится далее по линии 28 и через обратный клапан 29 в водородный накопитель 30. Кроме того, линия 28 снабжена отводной трубой 31 и клапаном 32 для снижения давления водорода, например, для обслуживания электролизера. Газообразный кислород подводится из сепаратора воды 16 газообразного кислорода к перепускному клапану 34 на линии 33. Перепускной клапан 34 имеет корпус 35, который разделен с помощью герметичной диафрагмы 36 на два отсека 37 и 38. Отсек 37 содержит седло 39, снабженное отверстием 40 и каналом 41, идущим от отверстия 40 через седло 39. Газообразный кислород проходит по линии 33 в отсек 37 перепускного клапана 34 и далее через отверстие 40 и канал 41 в отводную кислородную трубу 42. Другой отсек 38 перепускного клапана содержит пружину 43, которая одним концом опирается на дно корпуса 35, а другим концом на диафрагму 36. Таким образом, кислород может проходит через отверстие 40 и канал 41 в кислородную отводную трубу 42, только когда давление превышает заданное значение. Существенной характеристикой в работе перепускного клапана 34 является, кроме того, то, что отсек 38, содержащий пружину 43, также через линию 44 соединяется с давлением водорода, т.е. линией 28. В устройстве согласно фиг. 1 регулирование давления осуществляется следующим образом. К одной стороне диафрагмы 36 перепускного клапана 34 давление подается как от водородной линии 28, так и, кроме того, от пружины 43, прижимающей диафрагму 36 к сторонам отверстия 40 в седле 39. Поэтому кислород может пройти в отводную трубу 42, только когда давление кислорода в линии 33 превышает сумму давления водородной линии 28 и силы сжатия пружины 43. Когда кислород выходит, давление в кислородной линии 33 падает до тех пор, пока величина сжатия пружины 43 не станет больше, чем давление в водородной линии 44 и 28, поэтому диафрагма 36 закрывает отверстие 40. Таким образом, давление кислорода автоматически соответствует давлению в водородной линии 28, однако оставаясь всегда выше, чем давление водорода в линии 28. Преимущества рассмотренной системы регулирования давления заключается прежде всего в том, что регулирование является механическим, не потребляющим электроэнергии, нет необходимости в отдельный контрольных клапанах и датчиках давления, и водород не расходуется при регулировании. Если требуется сбросить давление из устройства, например, для обслуживания открывается клапан 32 на отводной трубе 31 и водород выпускается. Таким образом, давление в лини 44 падает, и диафрагма 36 позволяет кислороду пройти в отводную трубу 42, так что давление кислорода соответствует снижению давления водорода. Обратный клапан 29 предохраняет давление в водородном резервуаре 30 от сброса в отводную трубу 31. Когда устройство снова запускается в работу, перепускной клапан 34 устанавливается так, что давление водорода в линии 28 до обратного клапана 29 увеличивается, и давление кислородного газа в линии 33 увеличивается одинаково. Когда давление водорода в линии 28 достигает давления в водородном накопителе 30, водород начинает поступать в водородный накопитель 30. Как указано выше, регулированием жесткости пружины 43 перепускного клапана 34 может быть установлен избыток давления при нужном значении между давлением кислородной линии и давлением водородной линии. Хотя абсолютные значения указанных давлений никоим образом не являются существенными с точки зрения работы устройства, можно сказать, что избыток давления кислорода порядка 1-2 бар является применимым на практике. Вариант, представленный на фиг. 2, отличается от варианта, представленного на фиг. 1, нижеследующим. В этом случае вода, отделенная в сепараторе воды 15 газообразного водорода, возвращается в электролизер 10 через сепаратор воды 16 кислородной линии. С этой целью труба 24 соединяется с сепаратором воды 16 кислородной линии. Для успешного осуществления возврата воды давление на водородной стороне должно быть выше, чем на кислородной стороне. С другой стороны, операция сброса кислорода перепускного клапана 34 требует, чтобы давление кислородного газа в линии 33 было выше, чем сумма поджатия пружины и давления водорода, приложенная к диафрагме 36. С этой целью давление водорода к пружинной стороне перепускного клапана 34 подводится не от впускной стороны обратного клапана 29, но через линию 45 и трехходовой клапан 46 от выпускной стороны обратного клапана 29. К тому же обратный клапан 29 устроен так, чтобы обеспечить падение давления, которое больше, чем сжатие пружины перепускного клапана 34. Еще раз, абсолютные значения давлений и разностей давлений являются несущественными с точки зрения работы устройства, но пригодное сжатие пружины в перепускном клапане 34 может быть порядка 1-2 бар и соответственно падение давления в обратном клапане 29 может быть порядка 3-4 бар. Когда в устройстве, показанном на фиг. 2, требуется снизить давление в устройстве для электролиза, это снова осуществляется через отводную трубу 31 и клапан 32. Так как обратный клапан 29 предотвращает любые возвратные потоки, давление водорода на пружинной стороне перепускного клапана 34 не будет падать, и, таким образом, никакое давление кислорода в линии 33 не падает. Поэтому линия 47 соединяется с трехходовым клапаном 46, тем самым давление на пружинной стороне перепускного клапана 34 и соответственно давление кислорода могут быть снижены через линии 44 и 47, когда соединение через линию 45 перекрыто. При необходимости указанная операция может быть осуществлена автоматически, но для этой цели, например, могут потребоваться датчики давления (не показаны) на обеих сторонах обратного клапана 29 в водородной линии 28, тем самым реверсивный трехходовой клапан 46 может быть при необходимости устроен для работы автоматически в зависимости от того, является ли давление водородного накопителя 30 выше или ниже, чем давление в линии 28 до обратного клапана 29. Устройство согласно фиг. 3 является в других отношениях подобным устройству, показанному на фиг. 2, за исключением того, что оно включает в себя два перепускных клапана 34а и 34b, к которым давление водорода подводится с различных сторон обратного клапана 29 в водородной линии 28. К пружинной стороне первого перепускного клапана 34а давление водорода подводится по линии 44 от точки, расположенной после обратного клапана 29. К пружинной стороне второго перепускного клапана 34b давление водорода подводится по линии 47а от точки, которая расположена до обратного клапана 29. Таким образом, комбинация перепускных клапанов 34а и 34b заменяет трехходовой клапан 46 и линию 47 в устройстве, показанном на фиг. 2. Когда давление водорода является более низким до обратного клапана 29, чем после него, регулирование давления кислорода имеет место с помощью перепускного клапана 34b, а когда давление водорода является более высоким до обратного клапана 29, чем после него, регулирование давления кислорода имеет место с помощью перепускного клапана 34а. Устройство, показанное на фиг. 4, по конструкции и работе является подобным устройству, показанному на фиг. 2, исключением того, что давление водорода подается гидравлически к пружинной стороне перепускного клапана 34 по линии 44. Для этой цели в линию 44 добавляется наполненный жидкостью сепаратор 48, содержащий чувствительно подвижный, но герметичный поршень 49. К тому же линия 44 и пружинная сторона 38 перепускного клапана 34 являются заполненными жидкостью. Сепаратор 48 действует тогда как средство безопасности в случае, если диафрагма 36 перепускного клапана 34 разрушается, так что газы водород и кислород могут соединиться друг с другом. Если диафрагма 36 разрушится, поршень 49 прижимается в результате воздействия давления водорода в нижнее положение к уплотнению 50, тем самым соединение давления от водородной линии 28 до перепускного клапана 34 перекрывается, и смешение газов предотвращается. Естественно, подобное сооружение также используется в устройствах, показанных на фиг. 1 и 3. Как показано выше, кожух под давлением 26 поддерживается под давлением с помощью давления газа, получаемого при электролизе, т.е. в данном случае с помощью трубы 27, идущей к кожуху под давлением 26 от сепаратора воды 16 газообразного кислорода. Количество жидкости, добавляемой в кожух под давлением 26, является предпочтительно таким, что поверхность жидкости поднимается, по крайней мере, таким же образом в трубе 27. В варианте, показанном на фиг. 5, обратный клапан 145 устанавливается в трубе 27, чтобы обеспечить прохождение газа только в направлении кожуха под давлением 26. Поэтому имеющееся в сепараторе воды 16 давление газообразного кислорода передается через трубу 27 и обратный клапан 145 к кожуху под давлением 26 и жидкости в нем. Если требуется, например, для обслуживания, чтобы давление из электролизера было сброшено, клапан 32 в трубе 31 открывается и водород выходит. Тем самым давление в трубе 44 снижается, и диафрагма 36 позволяет кислороду пройти в выпускную трубу 42, тем самым давлением кислорода соответствует снижению давления водорода. Обратный клапан 29 предохраняет поступление газообразного водорода от накопителя водорода 30 по выпускной трубе 31. Теперь обратный клапан 145 в трубе 27 предотвращает, однако, выпуск давления из кожуха под давлением 26. С этой целью предусматривается перепускной клапан 146, имеющий конструкцию перепускного клапана 34. Так труба 147 присоединяется к пружинной стороне перепускного клапана 146 от трубы 27. Выпускная сторона перепускного клапана 146 соединяется с трубой 27 с помощью трубы 148. Когда давление в сепараторе 16 начинает падать, давление в кожухе под давлением 26 на пружинной стороне перепускного клапана 146 остается сначала таким же, как было. Однако в данный момент давление в кожухе под давлением 26 превышает общее давление на пружинной стороне перепускного клапана и сжатия пружины. Поэтому газ начинает выходит из перепускного клапана 146 по трубе 149. Хотя в варианте на фиг. 5 показано, что кожух под давлением 26 поддерживается под давлением кислорода, поступающего по трубе 27 от сепаратора воды кислорода, необходимо отметить, что опрессование может быть выполнено отовсюду, где еще будет иметься давление кислорода, получаемого в электролизере. Труба 27 поэтому может быть соединена с трубой 33 или даже с трубой 22, хотя последнее не рекомендуется, потому что кислород, поступающий в трубу 22, содержит воду. Также очевидно, что создание давления в кожухе под давлением может быть также осуществлено с помощью давления водорода, тем самым труба 27 может быть соединена, например, с сепаратором воды 15 водорода или с водородной линией 28. Устройство, показанное на фиг. 5, предохраняет жидкость в кожухе под давлением от попадания в жидкой или парообразной форме в газовые циркуляции устройства и в то же время обеспечивает, чтобы давление в кожухе под давлением было гарантировано от снижения в случае, когда давление от источника газа падает. К тому же создание переменного давления достигается без применения отдельного защитного газа для создания давления и его контроля. Количество газа, требующееся для создания давления, является чрезвычайно малым. Необходимо особо отметить, что в устройстве не только получаемый в электролизере водород, но также кислород может быть использован в качестве опрессовывающего газа без какого-либо опасения коррозии. Степень сжатия пружины перепускного клапана 146 выбирается соответственно такой, что давление в кожухе под давлением 26 остается несколько меньшим давления газа, получаемого при электролизе. Пригодное давление составляет обычно самое большое порядка нескольких бар. Когда давление от источника газа падает и разность между давлениями от источника газа и в кожухе под давлением 26 является меньше поджатия пружины перепускного клапана 146, давление от канала 27 между обратным клапаном 146 и кожухом под давлением 26 гарантируется от сброса через трубы 148 и 149, например, в атмосферу. Вариант, показанный на фиг. 5, может быть применен независимо от того, кислород или водород используется для создания давления в кожухе под давлением 26. Даже при использовании водорода сброс давления из кожуха под давлением 26 в атмосферу не создает никакого риска, потому что количества выходящего газа в любом случае очень небольшие. Принцип работы перепускного клапана, показанного в устройствах на фиг. 1-4, однако, обуславливает то, что, когда давление кислородной стороны падает ниже давления водорода (например, из-за утечки в кислородной трубе), давление водорода удерживается от слияния с давлением кислорода. Несмотря на снижение давления кислородной стороны, давление кислорода возрастает, когда электролизер работает, в результате чего электролизеры могут разрушиться. Вариант, показанный на фиг. 6, обеспечивает систему безопасности, с помощью которой указанный недостаток может быть устранен. В устройстве согласно фиг. 6 применяется модифицированный перепускной клапан в соответствии с фиг. 1-4 как для поддержания давления водорода и кислорода в заданном соотношении в устройстве для электролиза с переменным давлением, так и как средство безопасности для снижения давления водорода в случае, когда давление кислородной стороны будет по той или иной причине падать. Вариант, показанный на фиг. 6, отличается от варианта фиг. 1 тем, что в устройстве добавляется перепускной клапан 245, предназначенный для падения давления водорода в линии 28, когда имеет место падение давления в кислородной линии 33. Перепускной клапан 245 снабжен двумя отсеками 247 и 248, разделенными герметичной диафрагмой 246. Отсек 247 содержит седло 249, снабженное отверстием 250 и каналом 251, идущим от отверстия через седло 249. Газообразный водород может проходить по линии 255 к отсеку 247 перепускного клапана 245 и далее через отверстие 250 и канал 251 в отводную водородную трубу 252. Другой отсек 248 перепускного клапана 245 содержит пружину 253, которая подживает диафрагму 246. Таким образом, водород может проходить через отверстие 250 и канал 251 в отводную водородную трубу 252, только когда его давление превышает заданное значение. Существенной характеристикой в работе перепускного клапана 245 является, кроме того, то, что отсек 248, содержащий пружину 253, соединяется также с давлением кислорода, т.е. с линией 33, или также с сепаратором воды 16 кислорода, например, с помощью трубы 254. В перепускном клапане 245, используемом как средство безопасности в устройстве, показанном на фиг. 6, жесткость пружины 253 устанавливается такой, чтобы требуемая разность давления между газами для того, чтобы удалить водород, была достаточно высокой, так что ненужная утечка не имеет место (например, 5-6 бар). В кожухе под давлением может быть использована любая жидкость, которая является электронепроводящей, инертной по отношению к водороду или кислороду, неагрессивной по отношению к используемым материалам и длительно выдерживающей рабочие температурные условия. Цена и нетоксичность также являются аспектами, которые должны учитываться. Поэтому в устройстве согласно изобретению могут быть использованы, например, силиконовые масла и жиры, фторированные масла на основе масла или синтетические смазки, или даже дистиллированная вода. Недостатком последней, однако, является плохая морозостойкость и то, что она может вызывать электрохимическую коррозию, особенно в сочетании с кислородом. Ни одно из обычных масел не может быть использовано вместе с кислородом. Примерами применимых опрессовывающих жидкостей являются, в частности, силиконовые масла и жиры, такие как жидкость Dow Corning 200 Fluid, изготовляемая фирмой Company Dow Corning, или масло Rhodosil компании Rhone-Poulenc. В вариантах согласно фиг. 1-6 кислород описывается как первый газообразный продукт, а водород как второй газообразный продукт. Однако с точки зрения работы способа и устройства согласно изобретению нет разницы, что является первым газообразным продуктом и соответственно вторым газообразным продуктом.

Формула изобретения

1. Способ регулирования давления в электролизере, который производит водород и кислород при разложении электролитической жидкости с помощью электрического тока, содержащем герметичную работающую под давлением электролитическую ячейку для получения водорода и кислорода, водородную линию для отвода водорода из ячейки и водородный накопитель, кислородную линию для отвода кислорода из ячейки и средства подачи электролита в ячейку, отличающийся тем, что между давлением кислородной линии и давлением водородной линии поддерживают заданную разность давления при прохождении кислорода/водорода через один или более пружинных перепускных клапанов, при этом давление в водородной линии подводят к пружинной стороне перепускного клапана. 2. Способ по п.1, отличающийся тем, что в кислородной линии поддерживают заданное повышенное или пониженное давление по сравнению с давлением водородной линии при подведении давления водорода к пружинной стороне перепускного клапана от точки после обратного клапана, установленного на водородной линии, или соответственно от точки до обратного клапана. 3. Способ по п. 1 или 2, отличающийся тем, что между давлением кислородной линии и водородной линии поддерживают заданную разность давления посредством двух перепускных клапанов, установленных на кислородной линии, при этом давление водородной линии подводят к пружинной стороне второго перепускного клапана от точки до обратного клапана, установленного на водородной линии, и к пружинной стороне первого перепускного клапана от точки после обратного клапана. 4. Электролизер для производства водорода и кислорода при разложении электролитической жидкости с помощью электрического тока, содержащий по меньшей мере герметичную работающую под давлением электролитическую ячейку для получения водорода и кислорода, водородную линию для отвода водорода из ячейки в водородный накопитель, кислородную линию для отвода кислорода из ячейки и средства подачи электролита в ячейку, отличающийся тем, что содержит средства поддержания заданной разности давления между давлением кислородной линии и давлением водородной линии, причем средства снабжены одним или более перепускными клапанами, установленными на кислородной/водородной линии, и средства подведения давления водородной/кислородной линии к пружинной стороне перепускного клапана. 5. Электролизер по п.4, отличающийся тем, что средства подведения давления водородной линии к пружинной стороне перепускного клапана содержат обратный клапан, установленный на водородной линии, и дополнительные линии для подведения давления водородной линии к пружинной стороне перепускного клапана. 6. Электролизер по п.5, отличающийся тем, что дополнительные линии обеспечивают соединение от пружинной стороны перепускного клапана до точки на водородной линии до обратного клапана. 7. Электролизер по п.5, отличающийся тем, что дополнительные линии обеспечивают соединение от пружинной стороны перепускного клапана до точки на водородной линии после обратного клапана. 8. Электролизер по п.6 или 7, отличающийся тем, что содержит трехходовой клапан для обеспечения соединения от пружинной стороны перепускного клапана до точки на водородной линии до обратного клапана. 9. Электролизер по пп.4 8, отличающийся тем, что содержит два перепускных клапана, при этом дополнительные линии служат для подведения давления водородной линии к пружинным сторонам обоих перепускных клапанов так, что пружинная сторона второго перепускного клапана соединена с точкой на водородной линии до обратного клапана, а пружинная сторона первого перепускного клапана соединена с точкой на водородной линии после обратного клапана. 10. Электролизер по пп. 4 9, отличающийся тем, что электролитическая ячейка установлена в защитный кожух, находящийся под давлением газа, получаемого при электролизе. 11. Электролизер по п.10, отличающийся тем, что защитный кожух заполнен инертной жидкостью и находится под давлением кислородной линии. 12. Электролизер по пп.4 11, отличающийся тем, что содержит сепараторы жидкости для отделения электролитической жидкости от газов, проходящих по водородной и кислородной линиям. 13. Электролизер по пп.4 12, отличающийся тем, что газовый объем водородной линии между электролитической ячейкой и обратным клапаном, установленным на водородной линии, по меньшей мере в два раза больше, а предпочтительно более чем в два раза больше газового объема кислородной линии между электролитической ячейкой и перепускным клапаном, установленным на кислородной линии. 14. Электролизер по пп.4 13, отличающийся тем, что давление водорода к пружинной стороне перепускного клапана передается гидравлически с помощью жидкости в дополнительной линии. 15. Электролизер по п. 14, отличающийся тем, что дополнительная линия содержит газожидкостный сепаратор, снабженный поршнем, в котором поршень благодаря воздействию давления водорода перекрывает соединение с пружинной стороной перепускного клапана, снабженного диафрагмой, если диафрагма разрушается. 16. Электролизер для получения водорода разложением водородсодержащей жидкости с помощью электрического тока на водород и кислород в работающей под давлением электролитической ячейке, установленной в кожухе под давлением, отличающийся тем, что кожух заполнен жидкостью, а электролизер снабжен средствами подведения давления газа, получаемого при электролизе, в кожух, причем средства содержат проходной канал от сепаратора жидкости для отделения жидкости от газа или проходной канал от источника получаемого при электролизере газа к кожуху, обратный клапан, установленный в проходном канале и пропускающий газ только в направлении кожуха, и перепускной клапан, к пружинной стороне которого подводят давление от сепаратора и к выпускной стороне которого подводят давление от кожуха. 17. Электролизер по п.16, отличающийся тем, что в проходном канале присутствует давление кислорода. 18. Электролизер по п.16, отличающийся тем, что в проходном канале присутствует давление водорода. 19. Электролизер по пп.16 18, отличающийся тем, что средства подведения давления газа содержат трубу, идущую от проходного канала к пружинной стороне перепускного клапана, и трубу, идущую от проходного канала к выпускной стороне перепускного клапана. 20. Электролизер по п.19, отличающийся тем, что труба, идущая от проходного канала к выпускной стороне перепускного клапана, соединена с атмосферой с помощью дополнительной трубы и дополнительного обратного клапана для предотвращения возможного разрежения в проходном канале между обратным клапаном и кожухом под давлением. 21. Электролизер для получения водорода и кислорода разложением электролитической жидкости с помощью электрического тока, содержащий герметичную работающую под давлением электролитическую ячейку для получения водорода и кислорода, водородную линию для отвода водорода из ячейки в водородный накопитель и кислородную линию для отвода кислорода из ячейки, отличающийся тем, что содержит средства поддержания заданной разности давления между давлением кислородной линии и давлением водородной линии, перепускной клапан, соединенный с водородной/кислородной линией, и средства подведения давления кислородной/водородной линии к пружинной стороне перепускного клапана. 22. Электролизер по п.21, отличающийся тем, что средства подведения давления кислородной линии к пружинной стороне перепускного клапана содержат систему труб, идущую от кислородной линии к пружинной стороне перепускного клапана. 23. Электролизер по п.21 или 22, отличающийся тем, что водородная линия снабжена обратным клапаном, обеспечивающим прохождение газа от электролитической ячейки в направлении водородного накопителя, а перепускной клапан соединен с водородной линией в точке, расположенной между ячейкой и обратным клапаном. Приоритет по пунктам: 31.08.92 по пп.1 15; 31.12.92 по пп.16 23.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

www.findpatent.ru

ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА ИЗ ВОДЫ

Заявляемое техническое решение относится к технологии электрохимических производств, а именно к устройствам для получения водорода и кислорода методом электролиза воды.

Известен электролизер воды трубчатого типа по патенту РФ на изобретение №2258767 (класс МПК С25В 1/04, приоритет 19.03.2003 г.) для получения водорода и кислорода путем электролиза воды, который содержит герметичную емкость с электродами, крышку, входные и выходные трубки. Электролизер снабжен регулятором уровня жидкости, выполненным в форме трубки, соединенной с герметичной емкостью, заполненной дистиллированной водой, с возможностью автоматического регулирования уровня жидкости в емкости электролизера при помощи вакуумного клапана. Электролизер соединен с емкостью жидкой щелочи через дозатор, снабженный соленоидом и реле времени. Электролизер соединен также с горелкой при помощи выходных труб, расположенных на разных уровнях и выполненных с возможностью раздельного извлечения из воды водорода и кислорода, полученных в процессе электролиза и перемещения их при помощи вакуум-насосов.

Недостатком данного электролизера является низкие производительность, надежность и долговечность.

Конструкция электролизера по патенту США на изобретение №7510633 (класс МПК С25В 1/10, приоритет 21.02.2003 г.) для получения водорода и кислорода, принятая за прототип, включает в себя катод трубчатой формы, анод - в виде стержня, мембрану, анодную и катодную полость с электролитом, водородный и кислородный коллектор, насос для электролита.

Перед началом работы электролизера, в анодную и катодную полости ячейки между которыми установлена мембрана, подается раствор электролита. Затем на электроды подается электрическая нагрузка. Электролит в анодной и катодной полости ячейки циркулирует при помощи насоса. Газовые пузыри, выделившиеся на электродах, совместно с электролитом, покидают ячейку через газовые каналы. Далее в кислородной и водородной емкостях газ отделяется от электролита, после чего газ поступает в баллон (либо иную емкость), а электролит собирается в общую емкость и с помощью насоса используется в дальнейшей работе.

Недостатками данного устройства являются:

- излишние энергетические затраты, из-за наличия расстояния между электродами (за счет анодной и катодной полостей), следовательно и рост сопротивления, что увеличивает потребляемую мощность и снижает производительность устройства;

- наличие высоких токов утечки, так как использование в конструкции электролизера общего электролитного коллектора заполненного раствором электролита, снижает производительность в целом всей установки.

Задачей заявляемой конструкции электролизера для получения водорода и кислорода из воды (водного раствора щелочи), является снижение потребляемой мощности, повышение производительности, а также надежности и безопасности в эксплуатации.

Поставленная техническая задача решается за счет того, что в электролизере для получения водорода и кислорода из воды включающем ряд последовательно соединенных ячеек, состоящих из катодов трубчатой формы, анодов выполненных в виде трубы, мембраны между катодом и анодом, исключающей смешивание выделившихся газов, анодной и катодной полостей, насосов для циркуляции электролита, емкости с щелочным электролитом, устройств для отделения газов от электролита, согласно заявляемой конструкции электролизера для получения водорода и кислорода из воды, набор из нескольких ячеек помещен в корпус. Анод и катод в ячейке плотно прилегают к газозапорной мембране, в качестве анода используется труба, выполненная из сетчатого материала (для легкого прохождения выделившегося анодного газа через анод), а в качестве катода - полый цилиндр из пористого гидрофобизированного материала. Анодные полости ячеек, заполненные электролитом, последовательно соединены между собой и с емкостью щелочного электролита, которая в свою очередь соединена с устройством для отделения кислорода от паров воды и щелочи, системой подачи воды и теплообменником. Катодная полость образована внешней стороной катодов ячеек и корпусом. Она не заполнена электролитом, является газовой и соединена с емкостью гидрозатвора и устройством для отделения водорода от паров щелочи и воды. Движение электролита в анодной полости осуществляется за счет эффекта «аэролифта». Для снижения напряжения электролизера, и, как следствие, уменьшения энергетических затрат, на поверхность анода и внутреннюю поверхность катода может быть нанесен катализатор.

Существенным отличием заявляемого устройства является то, что электроды плотно прилегают к газозапорной мембране, а анодная полость представляет собой трубу, заполненную электролитом. Также в данной конструкции хоть и находится общий электролитный коллектор, образованный соединением анодных полостей ячеек друг с другом, но в связи с тем, что выделившийся газ вспенивает электролит, площадь сечения электролитного моста в местах соединения ячеек-электролизеров значительно меньше, что в значительной степени снижает токи утечки и как следствие, энергозатраты, увеличивая производительность установки в целом. Кроме того, предлагаемая конструкция легко размещается в трубе небольшого диаметра, которая является одновременно и корпусом, обеспечивая повышенную прочность при незначительной толщине стенки и, соответственно, способствует снижению массы электролизера.

Между собой ячейки могут быть электрически соединены последовательно или параллельно. Последовательное соединение предпочтительней.

На фиг.1 изображено заявляемое устройство, на фиг.2 на виде А-А показан корпус и ячейка в разрезе.

Заявляемая конструкция электролизера для получения водорода и кислорода из воды включает в себя следующие элементы: корпус (1) в виде трубы, например, круглого сечения, размещенные в нем ячейки (2), соединенные между собой последовательно. Емкость с раствором щелочного электролита (3) в которой с помощью насоса подающего воду (4), поддерживается необходимая для работы электролизера концентрация электролита, поступающего с помощью насоса (5) из гидрозатвора (емкости с конденсатом и раствором щелочи) (6). Электролит для поддержания рабочей температуры электролизера, циркулируя через теплообменник (7), подается в ячейки (2). Для циркуляции электролита, в случае необходимости, включается насос (8). Устройство для отделения водорода от щелочи и паров воды (9) соединено с гидрозатвором (6) и катодной полостью (10) заявляемого электролизера. Устройство для отделения кислорода от щелочи и паров воды (11) соединено с емкостью с раствором щелочного электролита (3). На корпусе установлены токовыводы (12) для подачи нагрузки.

На фиг.2 (вид А-А) в разрезе показан корпус (1), например, круглого сечения, находящаяся в нем ячейка (2), представляющая собой катод (13) в виде цилиндра из пористого гидрофобизированного материала, анод (14) в виде трубы и расположенную между ними без зазора газозапорную мембрану (15). В анодной полости (16) ячейки (2) находится электролит, а внешняя сторона катодов (13) ячеек (2) и корпус (1) образуют катодную полость (10) электролизера.

Заявляемое устройство работает следующим образом. В корпусе (1) ячейки (2), число которых определяется необходимой производительностью электролизера, соединены между собой электрически последовательно. Кроме того, ячейки (2) последовательно соединяются между собой и по анодной полости (16), в которой циркулирует электролит. Катодная полость электролизера (10) является газовой, на дне которой собирается конденсат и раствор электролита, просочившийся через поры катода (13). Циркуляция электролита происходит за счет движения выделяемого при электролизе газа (эффект аэролифта) и при недостаточной подъемной силе возможно включение насоса (8). Для поддержания определенной рабочей температуры электролизера, электролит проходит через теплообменник (7). Электролит в виде пены попадает в емкость с раствором электролита (3), откуда, освободившись от газа, заново попадает в ячейки (2). Выделяясь, катодный газ насыщается парами воды и частично выносит щелочь из электролизера, некоторая часть которой конденсируется на стенках корпуса (1). Затем конденсат стекает в емкость гидрозатвора (6), далее при помощи насоса (5) перекачивается в емкость с раствором щелочного электролита (3). Для поддержания заданной концентрации электролита в анодных полостях (16) ячеек (2) в емкость с раствором щелочного электролита (3) подается вода при помощи насоса (4). Наработанные водород и кислород отводятся из электролизера для дальнейшего их использования, предварительно удаляя из них остатки щелочи и пары воды, соответственно в устройствах (9) и (11).

В качестве материала для анода была применена никелевая сетка с нанесенным на нее катализаторм - серебром, для катода полый цилиндр из пористого никеля, покрытый с внутренней стороны платино-родиевым катализатором, а газозапорной мембраны - кремнесодержа-щий волокнистый материал с добавлением фторопласта.

Как показали испытания, использование заявляемой конструкции электролизера позволяет:

- снизить до 7% потребляемую мощность и до 5% повысить производительность. Это достигается в заявляемой конструкции электролизера за счет плотного прилегания электродов (анода и катода) к газозапорной мембране и сокращения площади сечения электролитного моста в местах соединения ячеек, за счет того, что выделившийся в процессе работы электролизера газ вспенивает электролит в общем электролитном коллекторе. Это позволяет в значительной степени снизить токи утечки и, как следствие, энергозатраты, тем самым увеличивая производительность установки в целом;

- за счет использования единого корпуса, в котором размещаются ячейки, конструкция содержит меньше соединительных элементов вне корпуса электролизера, что позволяет снизить массо-габаритные характеристики, повысить надежность и безопасность электролизера в эксплуатации.

ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА ИЗ ВОДЫЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И КИСЛОРОДА ИЗ ВОДЫ

edrid.ru

Электролизные технологии, установки получения водорода

Электролизные технологии

     В доперестроечный период общий объем производства водорода в СССР составлял около 3 млн. т. в год. Из них доля электролитического водорода составляла около 300 тыс. т, то есть около 10%, и эта доля постоянно росла в связи с тем, что начиная с 70-х гг. сложился устойчивый рынок потребления электролитического водорода. Его структура сохранилась и сегодня: предприятия нефтехимической и химической промышленности используют, в основном, конверсионный водород (особенно если имеется прямой доступ к природному газу), а предприятия полупроводниковой, стекольной, пищевой, химической промышленности, металлургия и энергетика используют электролитический водород, учитывая простоту и надежность водных электролизеров, высокую чистоту генерируемых водорода и кислорода, возможность получения указанных газов под высоким давлением непосредственно на штуцере электролизера, высокую степень автоматизации процесса и высокий ресурс установок.

     Электролиз воды один из наиболее известных и хорошо исследованных методов получения водорода. Этот метод получил применение в ряде стран, обладающих значительными ресурсами дешевой гидроэнергии. Наиболее крупные электрохимические комплексы находятся в Канаде, Индии, Египте, Норвегии. Важен этот метод и потому, что он является наиболее универсальным в отношении использования первичных источников энергии. В связи с развитием атомной энергетики возможен новый расцвет электролиза воды на базе дешевой электроэнергии атомных электростанций. Электрохимический метод получения водорода из воды обладает следующими положительными качествами:

  1. Высокая чистота получаемого водорода – до 99,99%.
  2. Простота технологического процесса, его непрерывность, возможность наиболее полной автоматизации, отсутствие движущихся частей в электролитической ячейке.
  3. Возможность получения ценнейших побочных продуктов – тяжелой воды и кислорода.
  4. Общедоступное и неисчерпаемое сырье – вода.
  5. Гибкость процесса и возможность получения водорода непосредственно под давлением.
  6. Физическое разделение водорода и кислорода в самом процессе электролиза.

 

Установки получения водорода

     Электролизные установки для получения водорода используются прежде всего в энергетике, металлургии, электронной промышленности, пищевой промышленности и стекольной промышленности. В нашей страние электролитический водород применяется:

  1. В пищевой промышленности в основном для гидрогенизации жиров. Промышленность ориентирована на крупные блоки производительностью от 250 нм3Н2/ч.
  2. В металлургии: а) для получения металлов методом прямого восстановления руды)  б) для получения твердых сплавов.
  3. В электронной промышленности водород используется для создания восстановительной атмосферы. Одно из основных требований предприятий электронной промышленности к используемому водороду – его высокая чистота. Этим требованиям наилучшим образом соответствует водород, получаемый электролизом с последующей очисткой.
  4. В энергетике водород используется для охлаждения мощных  турбогенераторов, благодаря его высокой теплопроводности и коэффициенту диффузии, а также нетоксичности.
  5. В стекольной промышленности.

 

vodo-rod.ru


.