Простой генератор ШИМ-сигнала. Шим генератор для электролизера схема


Генератор Газа Брауна, газ брауна, HHO генератор, HHO

свяжитесь с нами по электронному адресу:                                     [email protected] или по Skype: stefan_k8

Универсальный Генератор Газа Брауна HC12/24V-PRO

Инструкция по установке и эксплуатации Генератора Газа Брауна – скачать …

Приложение: Водородный генератор (HHO generator) подходящий для автомобилей, микроавтобусов, грузовиков, сельскохозяйственной и строительной техники с двигателями от 1000 до 4000 куб. см.Водородный генератор отвечает болгарскому государственному стандарту (БДС). Он прошел испытания в лаборатории и в отношении его проведена процедура оценки соответствия согласно Директиве 2006/95-ЕС Европейского парламента. Маркирован европейскими инициалами соответствия СЕ2024 .

hho_generator

Генератор газа Брауна

Рабочее напряжение: 12 V – 14 VПотребляемая мощность: 10 А – 30 АПроизводство Газа Брауна: 120 литров в час .Экономия топлива: 15% – 40%Температура замерзания электролита -25 градусов по ЦельсиюГарантия: 24 месяца (в зависимости от условий эксплуатации)Все Генераторы Газа Брауна произведенные нами, базируются на модели HC12/24V Pro. Модификации отличаются по входным сигналам и датчикам регистрации сигналов управления.Комплектация Генератора Газа Брауна:1 Водородная ячейка2.Магнитный датчик (для дизельных двигателей) / Индуктивный датчик (для бензиновых двигателей)3.Водяной фильтр / Расширительный бак4.Контроллер процесса PWM5.Реле – 40А6.Кабели7.Шланги8.Электролит

Контакты – Заказ …

Прайс лист …

Электролизеры HC12/24V Pro

 

1. Рабочее напряжение – 11-14.02 V 2. Ток нагрузки 5 до 30 А3. Рабочая температура –15 до +50 градусов4. Потребляемый ток – измеритель уровня: – 5. Концентрация электролита (KOH) – 10 – 14%6. Производительность Газа Брауна до 2 л/м.7.Габаритные размеры (mm): H=220 , L=205 , W=1758. Материал8.1.Коробка – полипропилен

8.2.Электроды – Сталь 316L

Генератор газа Брауна

Генератор газа Брауна

Электролизер – устройство в котором электрохимическим путем производится процесс электролиза и в результате выделяется Газ Брауна. Коробка электролизера сделана из полипропилена – материала с хорошей устойчивостью к температурным изменениям, вибрациям, нагрузкам и к агрессивной химической среде. Он имеет форму классического аккумулятора. Состоит из коробки , верхней крышки, штуцеров, клапанов и измерителя уровня.Внутри располагаются электроды, посредством которых осуществляется электролиз. Они сделаны из стали марки 316L . Питание электродов производится через шпильки из нержавеющей стали – А2 (марка 304). При сборке используются шайбы и гайки из нержавеющей стали. Для улучшения электропроводимости вне коробки гайки и шайбы, которыми стягиваются кабельнные вводы для питания электролизера – из обычной стали – оцинкованной. Электролизер облеплен стикерами которые указывают предназначение отверстий и штуцеров. Клеммы питания обозначены плюсом и минусом и непосредственно отпечатаны на пластмассе коробки. На электролизере имеется и информационная наклейка с названием изделия и информацией и координатах производителя. Надписи – на болгарском и английском языках.

Контакты – Заказ …

Прайс лист …

Процесной контролер с ШИМ для ННО генератора PC12

PWM for HHO generator

1.Рабочее напряжение 13/28 V2.Рабочая частота – 1-3 kHz3.Выходной ток – <40А4.Рабочая температура – от -15 до 80 градусов5. Способ регулировки – широтно-импульсная модуляция6.Частота упр. сигнала для управления по оборотам 10-350 Hz

7.Управляющее напр. – 0,8 – 4,5 V8.Материал коробки – полистерол9.Размеры (mm) – L=199,4, H=43,2, W=84

„Процесной контролер с ШИМ ”

Процесной контролер с ШИМ -устройство, которое управляет всеми процессами происходящими в ходе работы Генератора Газа Брауна. Он регулирует величину тока в зависимости от режима в котором находится двигатель автомобиля в настоящий момент. Например, на холостом ходу ток который берется из альтернатора – 5-8 ампер, а при более 2000 оборотов он может быть 18-30 ампер(в зависимости от объема двигателя). Контроллер управляется сигналами которые генерируются автомобилем или датчиком следящим за оборотами автомобиля, который мы производим. Имеем два вида „ Контроллера процесса” – работающий на 12-14 вольтах и на 24-28 вольтах.Регулятор управляется несколькими способами: – от сигнала об оборотах, который берется от альтернатора автомобиля или от какого-либо датчика – например, коленчатого или распределительного вала, от внешнего датчика предоставленного нами или от частотного сигнала который генерируется при индукции от напряжения проходящего через любой кабель свечи зажигания автомобиля. Этот сигнал подается на тонкий кабель, который проходит между двумя толстыми кабелями со стороны входа контроллера. На некоторых Контроллерах процесса предназначенных для бензиновых автомобилей имеется выходной кабель к которому может быть подан как управляющий сигнал напряжения от TPS датчика расположенного на дроссельной заслонке. В принципе, сигнал там имеет напряжение от 0,8 до 4 вольт. После подачи этого напряжения не требуется никаких настроек контроллера – с помощью этого сигнала, он будет прекрасно работать. После подачи соответствующего сигнала, Контроллер процесса начнет работать в некотором состоянии в соответствии с поступающими сигналами. Для точной настройки необходимо открыть коробку контроллера и настроить его в соответствии с вашими нуждами. Это делается путем перемещения

перемычек, расположенных на материнской плате. Контроллер подает ток различной величины к электролизеру – в рамках 4 – 30 ампер. Контроллер процесса” помещен в пластиковую коробку. „ Контроллер процесса „ спроектирован так, что подает ток к электролизеру после запуска двигателя и начала зарядки аккумулятора током напряжением более 13,2 вольт. Это делается для того, чтобы не нагружать альтернатор автомобиля в начале работы, чтобы не брать ток от аккумулятора и использовать только свободный ток производимый альтернатором для получения HHO газа. Эта функция контроллера выступает и в качестве защиты от перегрузки – когда в автомобиле включается много приборов, напряжение, которым заряжается аккумулятор падает и, если значение падает ниже 13,2 вольт, контроллер выключает ” Генератор Газа Брауна “, чтобы предотвратить перегрузку генератора.Новые Контроллеры процесса которые сделаны с однокорпусн ым микропроцессором настраиваются компьютером при помощи программатора, который мы предоставляем и программного обеспечения, которое мы разработали.

Контакты – Заказ …

Прайс лист …

Синхронизатор сигналов режима управления „ Контроллером процесса”

1.Входное напряжение: 12-14V2.Выходной сигнал – напряжение – 2-14V3. Потребляемый ток: Это устройство является полностью нашей разработкой и представляет революционное открытие, на несколько уровней повышающее эффективность работы газогенератора Брауна и обеспечивающее точное дозирование Газа Брауна и подачу его к двигателю.

Синхронизационный блок служит для суммирования и управления сигналов с помощью которых регулируется двухступенчатый режим работы „Контроллера процесса PWM”. Берем от двигателя два вида сигналов – сигнал режима работы двигателя (этот сигнал показывает в каком режиме работает двигатель в настоящий момент) и сигнал нагрузки двигателя (сигнала показывает нагрузку двигателя в настоящий момент), обрабатываем их в устройстве и формируем управляющий сигнал для „Контроллера процесса” , который возможно наиболее адекватно дозирует количество Газа Брауна которое должно подаваться для получения максимальной эффективности.Оптимизатор Водородной ячейки(Оптимизатор – устройство, роль которого напоминает функцию турбины в ДВС).Оптимизатор Водородной ячейки – уникальное устройство которое:– улучшает эффективность работы Генератора Газа Брауна приблизительно на 20%;-повышает производительность водордной ячейки до 15%;-ускоряет передачу Газа Брауна к двигателю в несколько раз;-увеличивает динамику двигателя работеающего на Газе Брауна;-обеспечивает лучшее усвоение HHO газа двигателем;-понижает температуру работы водородной ячейки;-увеличавает безопасность;Рекомендуется для автомобилей с большими объемами двигателя и используемыми для профессиональной транспортной деятельности – микроавтобусов, автобусов, грузовиков, сельскохозяйственной и строительной техники.

Контакты – Заказ …

Прайс лист …

Магнитный датчик – DN

(DU – датчик с увеличивающимся напряжением выход. сигнала, DN-датчик с уменьшающимся на вых. сигналом)

sensore for HHO generator

датчик HHO generator

1.Напряжение питания: 12-14V2.Выходной сигнал-напряжение – 2-14V3.Частота выходного сигнала – 30 – 350 Hz4. Потребляемый ток: Датчик оборотов DU и DN представляет устройство, которое регистрирует с какими оборотами работает двигатель автомобиля и подает управляющие сигналы к „ Контроллеру процесса” . Датчик оборотов – это устройство, которое регистрирует изменения в магнитном поле своим чувствительным элементом. Напротив датчика на каком-либо из шкив двигателя, который который вертится пропорционально оборотам коленчатого вала, закрепляют магниты. При прохождении перед датчиком магниты изменяют магнитное поле, а эти изменения регистрируются датчиком и генерируют частотные сигналы и сигналы напрежения которые управляют контроллером процесса. Датчик устанавливается в пластиковой коробке. На крышке датчика устанавливается светящийся индикатор который показывает его режим работы. Питается непосредственно от аккумулятора автомобиля с целью избежания смущений и пиков в питании при работе двигателя автомобиля.

Контакты – Заказ …

Прайс лист …

Индуктивный датчик управления по сигналам от свечей

Индуктивный датчик предназначен для регистрации режима работы бензиновых двигателей по сигналам, генерируемым индуктивным путем от кабеля свечей автомобиля. Предназначен для бензиновых двигателей. Кабель какой-либо свечи обертывается силиконовым кабелем в котором индуцируется напряжение . Датчик регистрирует это напряжение как

частотный сигнал. Сигнал преобразуется в напряжение которое управляет работой „Контроллера процесса”. Таким образом, при увеличении оборотов двигателя регулируется производство Газа Брауна , который подается к двигателю.

1.Напряжение питания: 12-14V2.Выходной сигнал-напряжение – 2-14V3.Частота выходного сигнала – 30 – 350 Hz4. Потребляемый ток: Измеритель уровня – LM11.Напряжение питания: 12-14V2. Потребляемый ток:

Контакты – Заказ …
Прайс лист …

Измеритель уровня

Измеритель уровня– электронное устройство которое показывает каков уровень электролита в Электролизере . Имеется два индикатора красный и зеленый. Светящийся индикатор зеленого цвета показывает, что уровень электролита в Водородной ячейке на максимуме. При включении красного светящегося индикатора необходимо немедленное доливание дистиллированной воды в Водородную ячейку. В случае, когда ни один из индикаторов не светит – уровень нормальный. ВНИМАНИЕ: Проверяйте уровень только при поданном напряжении питания к Водородной ячейке (когда автомобиль находится в контакте и к водородной ячейке подается напряжение) в противном случае, будет светить красный индикатор, причем это не означает, что уровень низкий, а только что не подано напряжение питания к Генератору.

Контакты – Заказ …

Прайс лист …

HHO generator HC12/24V Pro

HHO generator HC12/24V Pro

www.hho-bulgaria.com

ШИМ-регулятор. Широтно-импульсная модуляция. Схема :: SYL.ru

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B ... U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат – использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат – значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы – доступность и простота элементов. Недостатки – сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных источников питания для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно – делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь – опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.

www.syl.ru

Простой генератор ШИМ-сигнала | CUSTOMELECTRONICS.RU

Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.

Формирование ШИМ-сигнала

ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются  с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.

Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.

Формирование ШИМ-сигнала

Формирование ШИМ-сигнала

На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.

 Схема

Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.

Схема генератора ШИМ

Схема генератора ШИМ

В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.

Печатная плата

Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.

Плата генератора ШИМ-сигнала

Плата генератора ШИМ-сигнала

Сборка и работа схемы

Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.

 

Плата генератора ШИМ в сборе

Плата генератора ШИМ в сборе

Технические характеристики

  • напряжение питания, 5-15В
  • диапазон изменения скважности, от 1 до бесконечности
  • рабочая частота, 500Гц
  • потребляемый ток, не более, 2мА

Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.

Список элементов

  1. ИМС LM358N в корпусе SO8 (DA1), 1 шт.
  2. Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
  3. Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
  4. Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
  5. Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
  6. Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.

Видео работы

Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.

Файл печатной платы в формате Sprint Layout 5.0 можно скачать по ссылке.

Мы будем очень рады, если вы поддержите наш ресурс и посетите магазин наших товаров shop.customelectronics.ru.

www.customelectronics.ru

Вода как топливо h3O -> HHO

Немного истории.Наверняка многие слышали про машину на воде, что Япония сделала ДВС на воде, а если быть точнее то на водороде. На самом деле ДВС на водороде придумали гораздо раньше, примерно в 20-30гг. А способ синтеза водорода из обычной воды появился параллельно с появлением электричества, да, да, попытки сохранить электричество в воде открыли человечеству водород как побочное действие тех опытов.

Бифельд Браун в 1921г разработал генератор, который с помощью электрических импульсов позволял разбивать атомы h3O на два атома водорода и один атом кислорода, он назвал эту гремучею смесь газом, сейчас этот газ называют газом Брауна. Позднее Браун предложил свой собственный вариант ДВС на водороде, который позволял отказаться от нефтяных продуктов. Нефтяным владельцам это не понравилось, они видели угрозу их богатству и карьере. Бифельд Браун загадочно исчез. Так про водород как топливо забыли на долго. Лишь во вротой мировой войне, когда был дефицит топлива в России, пришлось вспомнить про водород и использовать отработанный водород из дережаблей как топливо для ДВС, после войны про водород опять забыли и человечество стало привыкать к выхлопам. 

В СССР русские ученые впервые разработали полностью новый ДВС на водороде, были выпущены несколько микроавтобусов. Но по не понятным многим причинам исследование и выпуск автомобилей на водороде прекратились. И здесь очевидно кто за этим стоит.

Текст писал сам, из личных знаний, если обнаружите неточности, сообщите, поправлю.

Когда я наткнулся на ролик в интернете про устройство, которое позволяло автомобилям экономить топливо от 20% до 40%, то отнесся к нему скептически, но все же решился на эксперимент. Собрав простой генератор газов Брауна, я дико удивился результатом. После подтверждения я полез в интернет собирать информацию. Делал много опытов и экспериментов, в том числе и личных, пробовал много конструкций и реагентов.

Многие знают что при сжигании нефтяных продуктов в атмосферу выбрасывается большое количество углекислого газа СО2. Но не многие широко смотрят на эту проблему. В своем небольшом городке я живу уже 14 лет. Я хорошо помню то время, как приехал в этот город, в городе было очень мало автомобилей, дороги, стоянки были почти пустыми, про пробки даже мыслей не было. Сейчас каждый день я наблюдаю такую картину - пробки на дорогах, густое движение по дорогам, шум, стоянки во дворах просто на просто забиты машинами особенно под вечер. Что будет еще через 14 лет? Это очень печальная картина. Выброс СО2 способствует нарушению парникового эффекта, это нарушение уже происходит давно со времен индустриальной эпохи, вред экосистеме все заметнее и заметнее. Посмотрев данные по нефтяной отрасли, их прибыль и выброса углерода в атмосферу, статистика меня привела в шок! Если так пойдет дальше то человечество настигнет до точки не возврата очень быстро, мы уже не будем в состоянии что то менять.

Меня беспокоит тот факт что ученые и экологи не че не предпринимают для решения многих жизненно важных проблем. Они лишь изучают и собирают данные, говорят что это из-за того из-за этого, так возьмите и решите эти проблемы на корню! Они не предлагают ни каких решений для решения проблем. 

Я не ученый и не эколог, я практикую альтернативную науку. Я лишь хочу, что то изменить в пользу нашему поколению. И я не склонен к тщеславию, мне не нужны аплодисменты и я не хочу наживаться на проблемах. Я хочу делиться своими наработками и знаниями с вами.

smartprogress.do

Альтернативная Энергия Человечеству - Электролизер

Это далеко не новое открытие, просто раньше ни кто  массового не добавлял полученный газ  методом электролиза из воды в воздухозаборник автомобиля. А те кто попробовал, большой огласке, полученные результаты, не придавали.

Класика домашнего электролизера Советского периода ( 70-е годы ХХ века)

Установка на рабочее месте расширяет творческие возможности мастера при выполнении работ: пайка твердым припоем, изготовление, ремонту ювелирных изделий и многое другое... Установка является безопасной и высокоэкологической, так как при сгорании газов получается просто перегретый водяной пар, не имеющий цвета и запаха.Основная часть устройства электролизера состоит из ряда герметических полостей, образованных из стальных пластин — электродов, раз-деленных резиновыми кольцами и сжатых пластинами (стенки), выполненными из оргстекла. Герметизация набранного пакета, таким образом, осуществляется четырьмя шпильками. Внутренняя часть электролизера (полости) наполовину заполнена водным раствором NaOH или КОН.  Приложенное к пластинам-электродам постоянное напряжение вызывает электролиз воды и выделение газообразного водорода и кислорода.Эта смесь отводится через надетую на штуцер полихлорвиниловую трубку в промежуточную емкость, из нее в водный затвор, которые сделаны из двух порожних баллончиков для заправки газовых зажигалок (баллончики завода "Северный пресс” г. Ленинград). Газ, прошедший через водный затвор, где смесь воды с ацетоном в соотношении 1:1 приобретает необходимый для горения состав, и отведенный другой трубкой в форсунку в медицинский шприц с иглой, сгорает у ее выходного отверстия с температурой порядка 1800° С, так работает электролизер. Конструкция установки проста. Стенки электролизера выполнены из оргстекла толщиной 25 мм, химически стоек к электролитам и позволяет визуально контролировать его уровень, чтобы при необходимости добавлять через наливное отверстие дистиллированную воду.  Пластины-электроды изготовлены из нержавеющей стали любой марки, толщиной 0,6—0,8 мм. Для удобства сборки в пластинах выдавлены круглые углубления под резиновые кольца уплотнения, глубина их при толщине кольца 5—6 мм должна быть 2—3 мм.  Кольца, предназначенные для герметизации внутренней полости и электрической изоляции пластин, вырезаются из листовой кислотоупорен или маслобензостойкой резины. Все детали соединяют с помощью четырех шпилек М8, изолированных полихлорвиниловой трубкой.  Количество пластин-электродов в сборе — 10. Оно определяется параметрами блока электропитания: его мощностью и максимальным напряжением — из расчета 2 В на пластину. Потребляемый ток зависит от количества задействованных пластин (чем их меньше, тем ток больше) и от концентрации раствора щелочи. В работе лучше применять 4—8%-ный раствор электролита, при работе он не так сильно пенится.Выводы с электронаконечниками припаиваются к первой и трем последним пластинам. В качестве источника питания можно использовать выпрямитель, описанный в книге (совет 16). или стандартное зарядное устройство для автомобильных аккумуляторов ВА-2, подключенное на 8 пластин, при напряжении 17 В и токе около 5 А, которое обеспечивает необходимую производительность горючей смеси для форсунки-иглы с внутренним диаметром 0,6 мм- Оптимальное соотношение диаметра иглы форсунки и производительности электролиза устанавливается опытным путем так, чтобы зона воспламенения смеси располагалась вне иглы. Если производительность мала или диаметр отверстия слишком велик, горениеначнется в самой игле, которая от этого быстро разогреется и оплавится.  Надежным заслоном от распространения пламени по подводящей трубке внутрь электролизера является водяной затвор, который выполнен из полупрозрачного материала и позволяет контролировать уровень жидкостей в водяном растворе. Промежуточная емкость исключает возможность смешивания электролита и состава водного затвора в режимах интенсивной работы или под действием разряжения, возникающего при выключении электропитания. А чтобы этого избежать, по окончании работы следует сразу же отсоединить трубку от электролизера. Штуцеры емкостей сделаны из медных трубок диаметром 4 и 6 мм, устанавливаются в верхней части баллончиков на резьбе. Через них же осуществляется заливка состава водного затвора и слив конденсата из разделительной емкости.  Соедините короткой полихлорвиниловой трубкой диаметром 5 мм электролизер с промежуточной емкостью, последнюю — с водным затвором, а его выходной штуцер с более длинной трубкой (шланг) с форсункой—медицинский шприц с иглой. Внутрь рукоятки (шприца) помещается огнегасительная набивка — латунная сетка, свернутая в спираль.  Включите выпрямитель, подрегулируйте напряжением или количеством подключаемых пластин номинальный ток и подожгите выходящий из форсунки газ. Температура пламени также поддается некоторой корректировке составом водяного раствора, если залить в водяной раствор метиловый спирт, можно поднять температуру факела до 2600° С, для снижения температуры пламени водяной затвор заполняют смесью ацетона и воды в соотношении 1:1.

Еше Вариант, (тоже история)

Огонь из воды. Электролизер! В том, что нескольких литров воды достаточно, чтобы получить высокотемпературное пламя (2000° С), убедится каждый, ознакомившись с описанием устройства разработанного мною электролизера. Большая температура факела обеспечивает паяние черных и цветных металлов практически любыми тугоплавкими припоями или самим металлом (сварка). Высокая концентрация тепла в узком пятне позволяет прожигать, например, в тонкой листовой стали отверстия 02 мм и более, вести термическую обработку инструмента, выполнять фасонный раскрой тонкой листовой стали. "Водяной" горелкой можно обрабатывать эмали, керамику, стекло, в том числе кварцевое. Для этого, правда, температура факела увеличивается на 5000° С (способ здесь не описывается). Получаемый факел бесшумен, отсутствие углерода в его составе обеспечивает бездымность. В качестве отхода горения образуется просто перегретый водяной пар, не имеющий цвета и запаха. В расчете на изготовление прибора силами любого умельца предлагается предельно простая конструкция, в которой нет баллонов, редукторов, вентилей и сложной горелки.Основная часть устройства - электролизер; он состоит из ряда герметических полостей, образованных электродами, прокладками между ними и платами. Герметизация набранного таким образом пакета осуществляется стяжкой болтами. Через заливную трубку полости заполняются электролитом; уровень его ограничивается верхним торцом трубки. Отверстие, находящееся в нижней части каждого электрода, служит для равномерного заполнения электролитом каждой полости. Нижний патрубок предназначен для опорожнения полостей. Обе трубки герметично закрываются. При электролизе образующаяся газовая смесь кислорода и водорода через отверстие, находящееся в верхней части каждого электрода, направляется в отстойник, разделенный на две части перегородкой. Из него смесь поступает в водяной затвор через штуцер и шланг, барботирует (проходит) через слой воды и по шлангу поступает в горелку. Не менее важная часть устройства - водяной затвор. Он служит для отделения подводящего и отводящего газ шлангов столбом воды высотой 120 - 150 мм, через который газ барботирует. Затвор надежно защищает электролизер от случайной вспышки газа в шланге горелки. Его корпус изготовлен из металлической трубы O100 мм, заваренной с обоих концов. Через патрубок заливается вода до верхнего контрольного уровня. Кран находится на нижнем продольном уровне. Решетка служит опорой фильтра, изготовленного из любого гранулированного негорючего материала. Фильтр предотвращает унос влаги газом. Газоприемная трубка заканчивается обратным клапаном обычней конструкции. В корпус вмонтирован также обратный клапан с раструбом, срабатывающий при случайной вспышке газа. Автоматический выключатель напряжения - самодельный. Он состоит из корпуса, контактора и резиновой груши. Полость последней соединена с полостью водяного затвора. При превышении давления в системе груша раздувается и нажимом на рычаг контактора отключает прибор от электросети. Электросхема выпрямителя состоит из следующих элементов: лабораторный автотрансформатор - ЛАТР 2 кВт, трансформатор понижающий 220/65 В, мост на диодах на 15 А (любой конструкции), плавкий предохранитель на 20 А, амперметр (шкала не менее 15 А), вольтметр. Выпрямитель подключается к электролизеру биполярно, как указано на схеме. РАСЧЕТ И ИЗГОТОВЛЕНИЕ В соответствии с законом Фарадея при электролизе количество выделенного вещества пропорционально силе тока. Теоретически каждые 28,7 А дают 11,7 л водорода и 5,85 л кислорода. Практически выход по току никогда не бывает 100%. Падение напряжения на каждой паре электродов (расчетное) составляет 2 В. Плотность тока на 1 дм 2 площади электрода зависит от времени непрерывной работы электролизера и составляет от 2 до 5 А. Простота конструкции позволила сократить количество основных деталей до трех: электрода, прокладки, платы. Электрод - листовое декапированное или трансформаторное железо 250 X 250 мм толщиной 0,3-0,5 мм (32 шт.). Прокладка - резина средней твердости (фланцевая) ; кольцо O220 X 0 250 мм, толщина - 4-6 мм (31 шт). Плата - любой- изоляционный материал (листовой) 300 X 350 мм, толщина не менее 20 мм (2 шт.). Стяжные болты - М12 из стали 45, длина - по месту (не менее 4 шт.). Электролитом служит 22% раствор едкого натра (NaOH) в дистиллированной воде. По мере его расходования (общее количество 4 л) добавляется в электролизер только дистиллированная вода. Перед заливкой электролита нужно испытать герметичность собранного электролизера, заполнив его под давлением водой из городского водопровода; малейшие подтеки тщательно устраняются. При работе электролизера нельзя допустить нагревания электролита выше 65°. Ввиду постоянства состава газовой смеси, выдаваемой электролизером, упрощаются и требования к горелке. Ею может быть обыкновенная инъекционная игла от медицинского шприца, точнее, набор игл разного диаметра, от 0,3 до 1 мм. Игла крепится на конусе штуцера рукоятки так, как и на шприце. Рукоятка горелки представляет собой отрезок трубки, к которой через штуцер и шланг подводится газ от водяного затвора. Внутрь рукоятки помещается огнегасительная набивка в виде мелкой металлической дроби и сетки. В качестве шлангов используется хлорвиниловая трубка O4-5 мм. РЕКОМЕНДАЦИИ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ Следует помнить, что смесь водорода с кислородом, выдаваемая электролизером, - взрывоопасна! Однако сам прибор при тщательности его исполнения и аккуратности работы с ним никакой опасности не представляет. Это достигается тем, что отсутствуют промежуточные емкости значительного объема; газ нигде не накапливается: сколько его вырабатывается, столько же одновременно потребляется факелом. Однако категорически недопустимо заполнять получаемой газовой смесью какие-либо емкости для любых технологических целей, и тем более надувные детские летающие шары. Ни в коем случае нельзя также проверять герметичность соединений в конструкции электролизера пламенем свечи, спички и другим открытым огнем; недопустима и работа без заливки воды до верхнего контрольного уровня в водяном затворе или без систематической проверки наличия в нем воды, залитой перед началом работы. Опасно также снижение уровня электролита. Нужно постоянно добавлять дистиллированную воду по мере расхода электролита. При изготовлении электролита следует работать в защитных очках и резиновых перчатках. Гасить рабочий факел пламени нужно не выключением электропитания, а опусканием иглы в емкость с водой, иначе последует перегрев иглы и она выйдет из строя. Оператор должен работать с горелкой в светозащитных очках. В заключение несколько слов о перспективах. Конструкторам известно о том, что нет машин, аппаратов, приборов, не поддающихся совершенствованию. Это относится и к электролизеру. Здесь можно, например, в выпрямителе обойтись без ЛАТРа и трансформатора, без снижения эксплуатационного качества; в самом электролизере - без резиновых или иных прокладок; режим работы перевести в непрерывный; повысить температуру факела с 2000 до 3000°. На необъятной территории СССР немало мест, сезонно отрезанных бездорожьем или слишком отдаленных от баз снабжения. Для работающих в таких условиях автор разработал модель электролизера, выдающего газ под давлением, специально для выполнения разовых, например аварийных, работ с большой мощностью факела. Надеюсь совместно с заинтересованными читателями провести широкую проверку этой, как мне кажется, перспективной, разработки. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРОЛИЗЕРА Напряжение питающей сети, В - 220 Потребляемая мощность (регулируемая), Вт - до 1000 Потребление воды при максимальной мощности, г/ч - 60 Рабочее давление (регулируемое) газа, атм - до 0,3 Выход газа при максимальной мощности, л/ч - до 150 Максимальная тепловая энергия пламени, ккал/'ч - 500 Коэффициент преобразования электрической энергии в химическую - 0,7 Состав смеси (кислород и водород в точном соотношении) - 1:2 Размер факела пламени (игловидный) максимальный диаметр - до 5 мм максимальная длина (регулируемая) - до 150 мм Температура стабильного игольчатого факела - 2000°

 Схема электролизера:

1 - плата, 2 - прокладка, 3 - электроды, 4 - стяжной болт, 5 - отверстие для газовой смеси, 6 - отстойник с перегородкой, 7 - штуцер, 8 - шланг, 9 - корпус водяного затвора, 10 - газоприемная трубка затвора, 11 - корпус автовыключателя, 12 - контактор, 13 - резиновая груша, 14 - шланг к горелке, 15 - рукоятка горелки, 16 - огнегасящая набивка, 17 - полая игла, 18 - обратный клапан, 19 - водяной столб, 20 - кран нижнего уровня воды, 21 - заливной патрубок, 22 - решетка фильтра, 23 - фильтр, 24 - аварийный обратный клапан, 25 - раструб, 26 - сливной патрубок отстойника, 27 - сливной патрубок для электролита, 28 - заливная трубка, 29 - винтовая пробка, 30 - электролит.

И более поздняя (1997) версия   ИСТОЧНИК

В конструкции данного аппарата большее число рабочих пластин, модифицированные боковые платы и надежный штуцер для выхода горючей газовой смеси), но действующий по тому же принципу электролизер.

Тем, кто впервые сталкивается с подобным устройством, нелишне, думается, в самых общих чертах пояснить (а остальным напомнить), в чем суть такого рода конструкций. А она достаточно проста.

Между боковыми платами, соединенными четырьмя шпильками, размещены металлические пластины-электроды, разделенные резиновыми кольцами. Внутренняя ячеистая полость такой батареи на 1/2...3/4 объема заполнена слабым водным раствором щелочи (КОН или NaOH). Приложенное к пластинам напряжение от источника постоянного тока вызывает разложение (электролиз) раствора, сопровождающееся обильным выделением водорода и кислорода. Эта смесь газов, пройдя через специальный жидкостный затвор (рис. 1а), поступает далее на горелку и, сгорая, позволяет получить столь необходимую для многих технологических процессов (например, резки и сварки металлов) высокую температуру — около 1800° С.

Производительность электролизера зависит от концентрации щелочи в растворе и прочих факторов. А самое главное — от размеров и количества пластин-электродов, расстояния между ними, что, в свою очередь, определяется параметрами блока электропитания — мощностью и напряжением (из расчета 2...3 В на гальванический промежуток между двумя расположенными рядом друг с другом пластинами).Предлагаемые мною конструкции источника постоянного тока доступны для изготовления в условиях «домашней мастерской» и начинающему самодельщику. Они способны обеспечить надежную работу даже «восьмидесятиячеистого» (пластин-электродов у такого — 81 шт.) электролизера, а тем более — «тридцатиячеистого». Вариант, принципиальная электрическая схема которого изображена на рис. 4, позволяет к тому же легко осуществлять регулировку мощности для оптимального согласования с нагрузкой: на первой ступени — 0...1,7 кВт, на второй (при включении SA1) — 1,7...3,4 кВт.

И пластины для электролизера предлагаются соответствующие — 150x150 мм. Изготавливаются они из кровельного железа толщиной0,5 мм. Помимо газоотводного 12-мм отверстия в каждой пластине сверлится еще по четыре установочных (диаметром 2,5 мм), в которые при сборке продеваются вязальные или велосипедные спицы. Последние нужны для лучшего центрирования пластин и прокладок, а потому на окончательном этапе сборки из конструкции убираются.

Рис.2. Электролизер («восьмидесятиячеистый» вариант):

1 —плата боковая (фанера, s12, 2 шт.), 2 — щека прозрачная (оргстекло, s4, 2 шт.), 3 — пластина-электрод (жесть, s0,5; 81 шт.), 4 — кольцо разделительное герметизирующее (5-мм резина кислото- и щелочеупорная, 82 шт.), 5 — втулка-изолятор (кембриковая трубка 6,2x1, L35, 12 шт.), 6 — шпилька Мб (4 шт.), 7 — гайка Мб со стопорной шайбой (8 шт.), 8 — трубка вывода горючей газовой смеси, 9 — раствор слабощелочной (2/3 внутреннего объема электролизера), 10 — вывод контактный (медь рафинированная, 2 шт.), 11 — штуцер («нержавейка»), 12 — гайка накидная М10, 13 — шайба штуцера («нержавейка»), 14 — манжета (резина кислото- и щелочеупорная), 15 — горловина заливная («нержавейка»), 16 — гайка накидная M18, 17 — шайба заливной горловины («нержавейка»), 18 — шайба герметизирующая (резина кислото- и щелочеупорная), 19 — крышка заливной горловины («нержавейка»), 20 — прокладка герметизирующая (резина кислото- и щелочеупорная).

Вообще-то пришлось немало поломать голову, прежде чем «водогорелка» стала удобной и надежной, как лампа Эдисона: включил — заработала, выключил — работать перестала. Особенно хлопотным делом оказалась модернизация не самого электролизера, а подсоединяемого к нему на выходе жидкостного затвора. Но стоило отказаться от ставшего было шаблонным применения воды в качестве заслона от распространения пламени внутрь газообразующей батареи (по соединительной трубке) и обратиться к использованию... керосина, как все тут же пошло на лад.

Почему выбран именно керосин? Во-первых, потому, что в отличие от воды эта жидкость в присутствии щелочи не вспенивается. Во-вторых, как показала практика, при случайном попадании капель керосина в пламя горелки последнее не гаснет — наблюдается лишь небольшая вспышка. Наконец, в-третьих: будучи удобным «разделителем», керосин, находясь в затворе, оказывается безопасным в пожарном отношении.

По окончании работы, во время перерыва и т.п. горелка, естественно, гасится. В электролизере образуется вакуум, и керосин перетекает из правого бачка в левый (рис. 3). Потом — барбатация воздуха, после чего горелку можно хранить сколько угодно: в любой момент она готова к использованию. При ее включении газ давит на керосин, который вновь перетекает в правый бачок. Затем начинается барбатация газа...

Рис.3. Керосиновый затвор и принцип его действия 

(а — при работающем электролизере, б — в момент отключения аппарата):

1 — баллон (2 шт.), 2 — пробка (2 шт.), 3 штуцер вводный, 4 — штуцер выводной, 5 — керосин, 6 — переходник (стальная труба).

Соединительные трубки в аппарате — полихлорвиниловые. Лишь к самой горелке ведет тонкий резиновый шланг. Так что после отключения питания достаточно эту «резину» перегнуть руками — и пламя, выдав напоследок легкий хлопок, потухнет.

И еще одна тонкость. Хотя блок питания (см. рис. 4) и способен обеспечить электроэнергией 3,4-киловаттную нагрузку, пользоваться столь большой мощностью в любительской практике случается очень редко. И чтобы «не гонять электронику» чуть ли не вхолостую (в однополупериодном режиме выпрямления, когда на выходе 0...1.7 кВт), нелишне иметь в распоряжении и другой источник питания электролизера — поменьше и попроще (рис. 5).

Рис.4. Принципиальная электрическая схема блока электропитания.

По сути, это — двух-полупериодный, известный многим самодельщикам регулируемый выпрямитель. Причем со связанными друг с другом (механически) «движками» 470-омных потенциометров. Конструктивно такую связь можно осуществить либо при помощи простейшей зубчатой передачи с двумя текстолитовыми шестернями, либо воспользоваться более сложным устройством типа верньера (в бытовом радиоприемнике).

Рис.5. Вариант блока питания с использованием в схеме тиристоров и самодельного трансформатора.Трансформатор в блоке питания самодельный. В качестве магнито-провода применен набор Ш16x32 из трансформаторной стали. Обмотки содержат: первичная — 2000 витков ПЭЛ-0,1; вторичная — 2x220 витков ПЭЛ-0,3.

Практика показывает: рассмотренный самодельный аппарат для газовой резки и сварки даже при самой напряженной эксплуатации способен исправно служить весьма продолжительное время. Правда, раз в 10 лет требуется проводить основательное техобслуживание, в основном из-за электролизера. Пластины последнего, работая в агрессивной среде, покрываются окисью железа, которая начинает выступать в роли изолятора. Приходится пластины промывать с последующей зачисткой на наждачном круге. Более того, заменять четыре из них (у отрицательного полюса), разъеденных кислотными остатками, собирающимися вблизи «минуса».

Поэтому рекомендуется в электролизер заливать только дистиллированную воду, а щелочной раствор использовать наименее загрязненный солями (недопустимо присутствие следов химических соединений серной и соляной кислот).

Применение так называемых сливных отверстий (кроме заливного и газоотводного) также вряд ли можно считать оправданным, что и было учтено при разработке аппарата. Столь же необязательным является и ввод в схему аппарата бидонов для сбора накапливающейся сверхагрессивной щелочи. К тому же эксплуатация «безбидонной» конструкции показывает, что этой «вредоносной жидкости» способно собраться за 10-летний период на дне керосинового затвора не более полстакана. Скопившуюся щелочь удаляют (например, при техобслуживании), а в затвор заливают очередную порцию чистого керосина.

Опубликовано:В.Радьков, ТатарстанМК 03 1997

* * * * * * * * * * * * * * * * * * * *

Если рассмотреть применение, то целью была домашняя резка и сварка металлов.

Теперь вопрос-  Возможность добавления полученного газа в топливно воздушную смесь автомобиля.

Принципиальная конструкция не меняется. Традиционно в настоящее время метал используется из нержавеющей листовой стали. Количество листов и их площадь каждый выбирает в зависимости от возможностей и своей подготовленности. 

Если наглядно, как сделать простой сухой электролизер своими руками, то на одном сайте - производителя в США наглядно все показано. Удачи ВАМ в защите экологии планеты и своего бюджета.

 Или очень хорошая подборка на английском языке

Схема самого популярного ШИМа для ННО систем

Ссылка на источник

Электролизер для КОСМОСА

ua-hho.do.am

ШИМ – контроллеры

Это немного измененная версия первого ШИМ. Принципиальная схема та же. Некоторые компоненты были изменены. И он выложил специально, чтобы поместиться в Velleman G106 герметичный литой алюминиевый корпус размером 4,5 "L х 2,5" Ш х 1,25 "H. Bud и Deltron также делают очень хорошие умирают случаях литого алюминия.

Описание схемы:

U1 является четырехъядерный LM324N ОУ. U1A и U1B образуют треугольник генератор волн. Размах выходного напряжения составляет ок. 1/3-2/3 Vcc. Выход подается на компаратор U1C который превращает его в меандр на основе порогового напряжения на выводе 10. Порог рабочего цикла устанавливается VR1. R6 и R7 откалиброваны, чтобы дать полный спектр рабочий цикл корректировки VR1. Опорного напряжения на R7 как правило, проводится на Vcc на выход токоограничивающие U1D усилителя ошибки. Коэффициент усиления устанавливается на 1000 (могут изменяться в зависимости от того, насколько жесткой Я хочу, чтобы ограничить ток). Каждый раз, когда источник Q1 рисует текущий падение напряжения происходит через R12. 80 ампер даст 120mV, максимальная настройка на VR3. Если падение напряжения на R12 превышает заданное значение VR3, компаратор падает цикла ШИМ, пока в среднем чуть меньше заданного значения. С4 обеспечивает ограничение тока средняя не пик.

R12 всего лишь 6 "часть # 14ga многожильный медный провод. Провода подключены к Источнику MOSFET у источника терминала, а также точки соприкосновения, в общей точке ЗАЗЕМЛЕНИЕ. Кроме того, терминал печатной платы на стыке C4/VR3 подключается непосредственно к общей позиции и терминал для печатной платы R10 подключается непосредственно к разъему источника MOSFET. Эти шаги очень важны для наблюдения как нежелательные колебания и нестабильность может произойти.

Чтобы настроить PWM для ограничения тока необходимо каким-то образом измерения больших токов втягивания Вашей нагрузки.

Во-первых, регулировать концентрацию электролита сотового привлечь суммы текущих Вы хотите, чтобы привлечь в свои холодные рабочая температура от прямого тока (без ШИМ). Измерьте тщательно, как вы делаете это, чтобы вы знали, что концентрация в следующий раз, вы должны очистить клетки и пополнения счета. В противном случае все, что вы должны сделать, это добавить дистиллированной воды, чтобы сохранить во главе с мобильного.

Горшки на 20 оборота. Начало настройки ШИМ, поворачивая Текущий VR3 Pot Limit и% банка VR1 полностью CW. Просто продолжайте поворот пока вы не начнете слышать их, перейдите или пока вы уверены, что вы превратили их не менее 20 оборотов. Они не сломается, если вы попытаетесь выйти за пределы максимального вращения.

Подключите ШИМ в камеру, включите питание и осуществлять наблюдение за текущим. В ячейке нагревается она начнет делать более современной.

Когда ток превышает, где вы хотите работать клетки, поверните Ограничение тока банка VR3 против часовой стрелки, пока не оседает на рабочий ток вы хотите. Как ШИМ начинает ограничивать ток вы услышите его начинают свистеть.

vodorod-as.narod.ru


.