67) Двухступенчатая схема горячего водоснабжения. Схема гвс


Основные схемы водоснабжения загородного дома

08 мая 2016 г.

Системы водоснабжения могут быть самотечными и напорными. Последние, в свою очередь, подразделяются на летние и круглогодичные системы водоснабжения.

Существуют три основные схемы устройства горячего водоснабжения частного дома — с применением коллектора, принудительной циркуляции и стандартная.

Если используется коллектор, вода в нем разделяется на холодную и горячую. Магистраль горячей воды дополнительно оборудуется водонагревателем, который может быть либо проточным, либо накопительным. Дальнейшая разводка имеет вид последовательной или параллельной. Соединение труб согласно первой схеме обойдется гораздо дешевле, поскольку экономятся материалы. Тем не менее у нее есть один недостаток: когда происходит водозабор значительного объема, напор в близлежащих кранах сильнее, чем в расположенных дальше.

Схемы горячего водоснабжения загородного дома

v_knigu__0003

а — с использованием коллектора; б — с применением принудительной циркуляции; в — стандартная

Кроме того, получить нагретую воду на дальних участках представляется затруднительным, поскольку она остывает. Диаметр основных труб обычно составляет 35-40 мм, а ответвлений к точкам, в которых осуществляется водозабор, — 16 мм.

Принудительная циркуляция воды пользуется большей популярностью. От коллектора к каждой точке забора воды проходит индивидуальный трубопровод. Коллекторов может быть несколько. Преимущество данной схемы заключается в том, что напор во всех магистралях от коллектора одинаков,  а путь воды от нагревателя до «точки назначения» сокращается. Еще один плюс такого способа водоснабжения — отсутствие в перекрытиях различного рода соединений, которые в случае аварии значительно затрудняют ремонтные работы. Минусом является использование большего количества труб и, соответственно, большие денежные затраты. Диаметр трубопровода от коллектора к месту водозабора также составляет 16 мм. Согласно данной схеме, последовательному соединению подвергается не более 2 точек водозабора, которые расположены рядом. Их, как правило, не используют одновременно (например, раковина и унитаз). Трубы необходимо применять те, что имеют диаметр 20 мм.

Третья схема, замкнутая, представляется идеальным вариантом для жильцов. Циркуляцию воды обеспечивает встроенный насос, благодаря чему температура горячей воды поддерживается постоянной. В зонах, где циркуляция не предполагается, длина труб не превышает 1 м. К таким трубопроводам нередко присоединяют полотенцесушители, которые выступают в качестве отопительных приборов. Их можно будет использовать, когда не работает система отопления. Недостатками данной схемы являются значительный расход тепла и материала, а также высокая стоимость. Кроме того, организация подобной системы требует монтажа в бистему горячего водоснабжения обратного клапана на линии подачи воды.

Горячее водоснабжение в частном доме обеспечивается с помощью водогрейного оборудования, которое монтируется в систему водоснабжения. К подобному оборудованию можно отнести газовые колонки, двухконтурные котлы и всевозможные электрические нагреватели.

Многие владельцы частных домов предпочитают совмещать систему горячего водоснабжения с отопительной системой. В таком случае сразу же исчезает необходимость монтажа дополнительного оборудования для нагрева воды.

В том случае, если горячая вода требуется постоянно и в большом количестве, создается сеть горячего водоснабжения, вариантов которой имеется множество. Одной из популярных сетей является такая, в которой применяется бойлер и специальный отопительный котел — одноконтурный.

Схема совмещения горячего водоснабжения с отоплением 

v_knigu__0004

1,2-3 — стояки горячего водоснабжения; 4 — воздухосборник; 5 — котел; 6 — отопительный прибор; 7 — кран подпитки; 8 — вентиль

Схема подключения автономной системы горячего водоснабжения

v_knigu__0005

1 — котел; 2 — расширительный бак; 3 — шаровый кран; 4 — циркуляционный насос; 5 — бойлер; 6 — предохранительный клапан; 7 — расширительный бак горячего водоснабжения; 8 — рециркуляционный насос; 9 — фильтр; 10 — обратный клапан; 11 — устройство автоматического заполнения системы

Совет сантехника

В комнате, где располагается насосная станция, следует поддерживать определенную температуру воздуха. В зимнее время она не должна быть ниже +2°С.

В насос перед входом устанавливают фильтр грубой очистки, а также обратный клапан. Позади насосной станции ставится фильтр тонкой очистки. После этого подключают реле давления, манометр, оставшееся оборудование. Водопроводную трубу от приборов отводят в коллектор, в котором вода распределяется по точкам потребления. Насосную станцию подключают к щитку управления, который отделен от основного щитка электроснабжения.

Во время монтажа домашней сети горячего водоснабжения устраиваются цепи циркулирования горячей воды. Они представлены в виде трубопровода, имеющего форму петли, который проходит от бойлера недалеко от точек разбора подогретой воды и возвращается к бойлеру снова.Совет мастера

Благодаря подобной циркуляции вода все время перекачивается и поступает к потребителю уже спустя 1-2 секунды после открытия крана.

Выполнение рециркуляции горячей воды

v_knigu__0006

 1 — бойлер; 2 — петлеобразный трубопровод; 3 — вентили разбора горячей воды

ros-pipe.ru

67) Двухступенчатая схема горячего водоснабжения

Для снижения расходов теплоносителя и соответственно затрат на его транспортировку Российские инженеры разработали двухступенчатые схемы позволяющие использовать тепло обратной воды системы отопления для предварительного подогрева исходной холодной воды. В основу положен принцип экономайзера и догревателя см. [2]. Т.е. приготовление воды горячего водоснабжения ведется на двух теплообменниках. Теплообменник первой ступени устанавливается на обратном трубопроводе системы отопления последовательно с ней. Он работает как экономайзер. В нем холодная вода подогревается до 30-40°С. Затем подогретая вода подается во вторую ступень и догревается до требуемой температуры, обычно 60°С, горячим теплоносителем. Вторая ступень включается параллельно или последовательно системе отопления в зависимости от схемы.

Применение двухступенчатых схем позволяет при одинаковой нагрузке ГВС экономить до 40% теплоносителя относительно его расхода для параллельной схемы. Это огромный плюс, так как помимо экономии теплоносителя в таких схемах температура "обратки" существенно ниже чем требуется по температурному графику, что ведет к увеличению КПД источника тепла.Однако по закону сохранения энергии: "если что-то где-то прибыло, то значит, что-то где-то убыло". Для работоспособности таких схем следует очень грамотно подбирать теплообменники, ведя увязку гидравлического режима системы ГВС с системой отопления. Т.к. всегда первая ступень включена последовательно системе отопления и она является дополнительным "паразитным" сопротивлением для теплоносителя системы отопления. Неправильный подбор теплообменников ГВС может привести не только к недостатку горячей воды у жителей, но и к плохой работе самой системы отопления, что в принципе может вести аварийным ситуациям. Отсюда следует, что подбор оборудования для такой схемы ГВС должен вести квалифицированный специалист, способный увязать ступени системы ГВС между собой, с системой отепления и с регулирующим клапаном.И естественно двухступенчатые схемы ГВС более дорогие т.к. требуют для работы два теплообменника, кроме того затраты на монтаж двухступенчатой схемы ГВС также выше. Ее стоимость относительно параллельной схемы выше в 2-4 раза в зависимости от соотношения нагрузок отопления и ГВС. Такое удорожание в основном дает теплообменник первой ступени, особенно это заметно при малой величине соотношения нагрузок. В этом случае расход холодной воды невелик, но для его нагрева через первую ступень должен пройти большой расход теплоносителя из системы отопления и второй ступени. Соотношение расходов в этом случае может достигать 5. Естественно габариты/стоимость первой ступени растут при практически неизменной мощности.Как видно, что при всех плюсах двухступенчатых схем нагрева горячей воды существует и масса минусов. Ну, без этого в технике и не бывает. Как говорится, идеальных систем не существует. Но все-таки возникает вопрос: возможно ли создать такую систему горячего водоснабжения, которая сочетала бы в себе простоту и надежность эксплуатации параллельной схемы и экономию теплоносителя двухступенчатых схем? Попытаемся на него ответить

studfiles.net

Современные технические решения в проточных системах ГВС - Журнал АКВА-ТЕРМ

Ф. Триш

 Автор статьи – директор инженерного бюро Thermo Integral GmbH & Co. KG (Лейпциг, Германия). 

Подписаться на статьи можно на главной странице сайта.

Типы и достоинства проточных схем ГВС ГВС с использованием проточной схемы и пластинчатыми теплообменниками – наиболее эффективный и гигиенический способ приготовления горячей воды. По сравнению с аккумуляторными схемами он имеет существенные преимущества.

Для проточного ГВС применяются параллельная одноступенчатая схема, последовательная и смешанная двухступенчатые схемы.

Параллельная одноступенчатая схема с одним теплообменником, подключённым к подающему трубопроводу тепловой сети параллельно системе отопления (рис. 1), отличается простотой и дешевизной.

Двухступенчатая схема ГВС применяется с целью уменьшения температуры воды в обратном трубопроводе и суммарного расхода воды из тепловой сети. Для этого теплообменная поверхность теплообменника ГВС разделяется на два участка, называемых ступенями. В первой ступени холодная водопроводная вода нагревается водой, выходящей из системы отопления. Затем подогретая в первой ступени теплообменника вода догревается вместе с водой рециркуляции до требуемой температуры (55–60 °C) сетевой водой из подающего трубопровода теплосети.

При последовательной схеме ГВС вторая ступень подключена перед системой отопления к подающему трубопроводу (рис. 2). Сначала горячая сетевая вода проходит вторую ступень ГВС, затем поступает в систему отопления. Таким образом, может оказаться, что температура теплоносителя будет недостаточной для покрытия тепловых потерь здания. Тогда во время отбора большого количества горячей воды в часы пик подключённое к ИТП здание может недостаточно нагреваться. Из-за аккумулирующей способности строительной конструкции это не отражается на комфортности в помещениях, если период недостаточной подачи тепла не превышает примерно 20 мин. Для летнего неотопительного периода имеется отключаемый байпас, по которому сетевая вода после второй ступени поступает в первую ступень ГВС, минуя систему отопления.

Смешанная двухступенчатая схема ГВС отличается тем, что её вторая ступень подключена к подающему трубопроводу тепловой сети параллельно к системе отопления, а первая ступень – последовательно (рис. 3). Сетевая вода, выходящая из второй ступени ГВС, подмешивается к обратной воде из системы отопления и также проходит первую ступень.

Таким образом, комфортность в помещениях здания со смешанной двухступенчатой схемой ГВС не снижается, однако расходуется больше сетевой воды, чем при последовательной схеме ГВС (рис. 4).

* По книге Н.М. Зингера и др. «Повышение эффективности работы тепловых пунктов». М., 1990.

Двухступенчатая схема находит наибольшее распространение в жилых зданиях со значительными по отношению к отоплению нагрузками на ГВС. В зданиях с очень низкими или высокими тепловыми нагрузками ГВС, по сравнению с отоплением (1 < QГВС/QО < 5), по действующим нормам, применяется параллельная одноступенчатая схема ГВС.

В западных странах в последнее время всё чаще задумываются о применении проточного способа ГВС, особенно после признания серьезной опасности заражения легионеллами – бактериями, размножающимися в непроточной тёплой воде. Строгие нормы, уже принятые в европейских странах, предусматривают регулярную термическую дезинфекцию аккумулирующих баков и подключённых к ним трубопроводов горячей воды, включая трубопроводы рециркуляции. Обеззараживание осуществляется подъемом температуры во всей системе на определённое время до 70 °C и выше. Необходимое для этого усложнение аккумуляторных схем особенно выявляет достоинства проточных систем ГВС с пластинчатыми теплообменниками. Они отличаются простотой и компактностью, требуют меньших инвестиций, обеспечивая при этом более низкие температуры обратной и меньшие расходы сетевой воды.

Более низкая температура воды в обратном трубопроводе тепловых сетей снижает тепловые потери и увеличивает КПД выработки электроэнергии на теплоэлектроцентрали. Меньшие расходы сетевой воды требуют меньших диаметров трубопроводов тепловых сетей и меньших расходов электроэнергии на её перекачку.

Варианты регулирования В настоящее время многие фирмы усиленно работают над автоматическими регуляторами, которые обеспечивали бы комфортную температуру горячей воды с точностью до 1–2 °C и менее того. В аккумуляторных баках равномерность нагрева достигается естественным или искусственным перемешиванием поступающей воды с находящейся в баке.

Для этой цели в проточных системах ГВС, особенно с низким и резко изменяющимся расходом, при регулировании температуры горячей воды требуется учесть, кроме температуры, как вторую величину, расход. Ведущими фирмами-производителями разработаны регуляторы для небольшого – под одного потребителя – расхода, работающие без вспомогательной энергии. Эти регуляторы учитывают и расход, и температуру горячей воды. В отличие от обычных термостатических регуляторов, при отсутствии расхода горячей воды данные устройства вообще могут прекращать подачу греющего теплоносителя, что предохраняет теплообменник ГВС от образования известковых отложений.

В системах проточного ГВС с большим потреблением горячей воды колебания расхода, по сравнению с его общим значением, меньше, и удовлетворяющую точность регулирования температуры можно достичь применением как термостатических, так и электронных регуляторов. Однако в электронных регуляторах необходимо сглаживать кривую регулирования правильным выбором закона регулирования и характеристик самого регулирующего клапана – скорости хода привода регулятора, диаметра клапана Ду, его гидравлического сопротивления kVS – чтобы исключить явления колебания во всем диапазоне его работы. Постоянное открытие и закрытие регулятора с высокой частотой подвергает пластинчатый теплообменник ГВС большим термическим и гидравлическим нагрузкам, что приведёт к его преждевременному выходу из строя из-за возникновения наружных или внутренних неплотностей.

Для предупреждения колебаний при больших разностях расхода горячей воды или при значительных колебаниях температуры греющей воды, например 150–70 °C, целесообразно устанавливать два параллельных регулятора разных диаметров, которые – сами по себе – оптимально обеспечивают определенный диапазон расхода сетевой воды (рис. 5).

Как отмечалось выше, при отсутствии разбора горячей воды, например в системах без рециркуляции или при регулярных отключениях подачи воды, необходимо защитить теплообменник от карбонатных отложений за счет прекращения подачи сетевой воды. При больших расходах этого можно достигать использованием комбинированных регуляторов с двумя датчиками температуры – нагреваемой и греющей воды – на выходах теплообменника (рис. 6). Второй датчик, настроенный, например, на 55 °C, прекращает подачу теплоносителя на теплообменник и в случае, когда датчик температуры горячей воды установлен далеко от теплообменника, и на него не оказывает влияние греющая среда в связи с отсутствием водоразбора. При температуре в теплообменнике 55 °C процесс отложения солей жесткости существенно замедляется.

Чем ближе датчики установлены к среде, параметры которой подвергаются регулированию, тем более качественного регулирования можно достичь. Поэтому датчики температуры желательно устанавливать, по возможности, глубже в соответствующие штуцеры теплообменника. Для этого можно использовать пластинчатые теплообменники со штуцерами с обеих сторон пакета пластин, где в один из штуцеров вставляется датчик температуры, а другой служит для отбора теплоносителя. Тогда датчик омывается теплоносителем еще перед его выходом из теплообменника, и при отсутствии циркуляции теплоносителя датчиком фиксируется температура среды под воздействием теплопроводности и естественной конвекции, что не имело бы места при его установке вне теплообменника.

Двухступенчатые схемы ГВС отличаются тем, что в первой ступени нагрева тепло отбирается от обратной воды системы отопления. В связи с несоответствием тепловых нагрузок отопления и ГВС в зимнем или ночном режиме может оказаться, что горячая вода нагревается выше требуемых 55–60 °C. Например, теплоносителем с температурой 70 °C (расчетная точка) вода ГВС ещё в первой ступени может нагреваться до 67–69 °C. Чтобы исключить при этих температурах перегрев и интенсивные отложения карбонатов, имеется возможность установки регулирующего трёхходового клапана на входе или выходе теплообменника (рис. 7). Его задача, в зависимости от температуры теплоносителя на выходе теплообменника, пропускать греющую воду через теплообменник или мимо него – по байпасу. Датчик трёхходового клапана установлен в обратном трубопроводе. Он одновременно с регулированием температуры греющего теплоносителя косвенно ограничивает температуру горячей воды. При этом отбор тепла из обратного трубопровода не ограничивается, а оптимизируется, повышая надёжность и комфортность ГВС.

В пользу паяного теплообменника В западных странах в подавляющем большинстве (свыше 90 %) случаев для целей ГВС используют паяные пластинчатые теплообменники. Это связано с относительной дешевизной и удобством обслуживания данных аппаратов.

Как правило, российские и украинские заказчики, имеющие опыт эксплуатации скоростных кожухотрубных теплообменников, часто требующих чисток, предпочитают разборные пластинчатые теплообменники. Однако надо учесть, что эти аппараты оснащаются прокладками из полимерных (резиновых) материалов, которые подвержены старению – растрескиваются, становятся хрупкими. После пяти лет эксплуатации при ремонте разборного пластинчатого теплообменника часто уже невозможно обеспечить его удовлетворительную плотность. А приобретение нового комплекта уплотнений обходится по цене, иногда почти сравнимой с ценой нового теплообменника.

Если уплотнения крепятся к пластинам клеем, то их замена связана с такими работами, как разрушение имеющихся уплотнений в жидком азоте и приклеивание новых. Для их проведения необходимы специальные приспособления и высококвалифицированный персонал. Производители теплообменников предоставляют заказчикам соответствующие услуги, но теплообменник зачастую требуется отправить на специализированное предприятие. Всё это привело к широкому применению в западных странах паяных пластинчатых теплообменников и для целей ГВС.

Отметим: сомнения относительно возможности применения паяных теплообменников в странах постсоветского пространства, связанные с плохим качеством теплоносителя, не обоснованны – жесткая вода встречается во всем мире. Следует лишь правильно отрегулировать ГВС и ограничивать температуру стенок теплообменника, как это описано в предыдущем разделе.

Паяные пластинчатые теплообменники подвергаются химической промывке. Если замечается недостаточные нагрев горячей воды или охлаждение обратной, а химический состав воды отличается повышенным содержанием солей жесткости, необходимо регулярно промывать теплообменник специальными растворами, которые не разрушают ни стенки теплообменника, ни медный припой. Заказчик может провести промывку своими силами: работа эта несложная, промывочные установки и реагенты доступны по цене и быстро окупаются.

При сверхвысоких температурах греющей воды (например, если соблюдается температурный график 150/70 °C), когда не исключено превышение температуры стенки теплообменника выше температуры, при которой происходит интенсивное образование накипи, требуется предварительное снижение температуры теплоносителя перед теплообменником. Для этого имеются два способа – насосная схема впрыскивания или элеваторная схема. В первом случае требуется отдельный датчик для включения насоса, расходуется существенное количество электроэнергии; применяемое оборудование подвержено износу. Элеваторная схема предельно проста, при термостатическом приводе не зависит от электрической сети и более экономична при реализации и эксплуатации (рис. 8). Подключение всасывающего патрубка элеватора к обратному трубопроводу системы отопления дает дополнительный эффект снижения температуры в обратном трубопроводе тепловых сетей.

Точечное решение Двухступенчатая схема ГВС требует наличия двух теплообменников – для первой и второй ступеней. Выбор теплообменников по мощности, то есть разбиение общей мощности по ступеням, – непростая задача, требующая нескольких итераций при расчетах (их проведение – обязанность поставщика). Отсутствием серийно выпускаемых блоков ГВС с двухступенчатой схемой обусловлены определенные сроки поставки.

Два паяных теплообменника требуется обвязать между собой трубопроводами. Обвязка занимает место и обусловливает существенную часть стоимости двухступенчатого модуля ГВС. Поэтому производители начали выпускать паяные теплообменники с промежуточной разделительной стенкой и шестью штуцерами.

Обвязка тепловых пунктов на их основе упрощается, но проблемы с расчетом и отсутствием серийного производства остаются.

Кроме того, при эксплуатации бывают периоды, когда первая или вторая ступени системы оказываются не загруженными вообще. Так, в летний период достаточно было бы второй ступени, а в расчетной точке отопления – первой.

Автором данной статьи разработано и запатентовано решение для смешанной двухступенчатой схемы ГВС, включающей один серийно выпускаемый паяный пластинчатый теплообменник (рис. 9). Его суть состоит в применении специального штуцера, вставляемого в один из серийных штуцеров. Через этот штуцер подается и обратная вода из системы отопления, и горячая сетевая вода из тепловой сети. Теплообменная поверхность в любом режиме задействована полностью.

Граница между ступенями – плавная. Вторая ступень занимает ровно столько площади, сколько требуется для догрева горячей воды. Остальная поверхность полностью задействована первой ступенью.

Имеющейся серией типоразмеров пластинчатых теплообменников задана градуировка мощности блоков ГВС. В табл. представлен типовой ряд блоков двухступенчатого проточного ГВС с одним паяным пластинчатым теплообменником типа Н55.

Тепловая мощность одной пластины (площадь – 0,14 м2) этого теплообменника составляет примерно 10 кВт в режиме 70/20 °C и 5/55 °C. Специальных расчётов для выбора теплообменников в данном случае не требуется. Такие блоки ГВС изготавливаются серийно, и самые ходовые размеры имеются на складе. Это существенно сокращает сроки поставки.

Статья напечатана в журнале «Аква-Терм» #5(39) 2007

 

Опубликовано: 19 августа 2010 г.

вернуться назад

Читайте так же:

aqua-therm.ru

Пуск системы горячего водоснабжения

Системы горячего водоснабжения подразделяются на центра­лизованные и местные. В централизованных системах одна водо­нагревательная установка в ЦТП обслуживает горячей водой одно или несколько зданий в пределах жилого микрорайона, квартала или поселка. Все централизованные системы проектируют с цир­куляционными трубопроводами для обеспечения потребителей горячей водой, так как без них при отсутствии водоразбора вода в подающих линиях быстро остывает и потребитель вынужден сливать ее, теряя при этом воду и теплоту. Кроме того, в системах горячего водоснабжения устанавливают полотенцесушители, не­обходимые для сушки белья и обогрева ванных комнат, которые в отсутствие циркуляции работать не могут. Циркуляционные тру­бопроводы и циркуляционные насосы создают непрерывное дви­жение воды, т.е. циркуляцию по замкнутому контуру: теплообмен­ник — подающий трубопровод — циркуляционный трубопровод — теплообменник, поддерживая температуру горячей воды у водоразборного крана на уровне 50—60 °С. В настоящее время в зданиях высотой 5 этажей и более часть подающих стояков объ­единяют в один водоразборный узел, называемый секционным узлом с единым циркуляционным трубопроводом.

Схемы присоединения водоразборных и циркуляционных стояков

а                                б                                       в                                            г             image118

а — парнозакольцованный стояк; б — секционный узел с циркуляционно-водоразборным стояком;в, г — секционный узел с циркуляционным стояком

В зданиях высотой более 50 м (свыше 16 этажей) систему го­рячего водоснабжения делят по вертикали на отдельные зоны с самостоятельными разводками и отдельными стояками для каждой зоны, иногда даже с устройством специальных техни­ческих этажей. Это связано с ограничением допускаемого давления перед водоразборной и водозапорной арматурой до 0,6 МПа.

Местные (тупиковые) системы горячего водоснабжения устраи­вают в индивидуальных домах (дачных, коттеджных, сблокиро­ванных) или в квартирах. Радиус действия их невелик, приготов­ление горячей воды производят в небольших генераторах теплоты (электрические, газовые водонагреватели, малолитражные котлы и т.п.). Весьма часто генератор теплоты является общим для сис­темы отопления и для системы горячего водоснабжения.

Во избежание быстрого разрушения от внутренней коррозии системы горячего водоснабжения выполняются из оцинкованных труб и металлополимерных труб (разрешено вводами правил СП 41-102-98 и СП 40-103-98 Госстроя России). Металлополимерная труба представляет собой пятислойную конструкцию.

Схема двухзонной системы ГВС высотного здания

image119

1 — общий повыситепьный насос холодной воды; 2 — повысительный насос второй зоны; 3 — водонагреватель второй зоны; 4 — водонагреватель первой зоны; 5 — разводящий трубопровод второй зоны; 6 — водоразборные стояки второй зоны; 7 — разводящий трубопровод первой зоны; 8 — водоразборные стояки пер¬вой зоны; 9 — циркуляционный трубопровод второй зоны; 10 — циркуляционный трубопровод первой зоны; 11 — циркуляционный насос первой зоны; 12 цирку¬ляционный насос второй зоны

Металлополимерная труба сочетает достоинства металлической и пластмассовой труб: 100%-я кислотонепроницаемостъ; корро­зионная стойкость; отсутствие минеральных отложений на стенках труб; долговечность = 25 лет; морозоустойчивость; надежность в условиях повышенной сейсмичности; повышенная шумопогло­щающая способность; удобство транспортирования: Технологич­ность монтажа — трубы легко гнется, позволяют огибать элемен­ты помещений, не требуется точная подгонка линейных размеров; монтаж без сварки, нарезки резьбы с оборудованием и приборами из стали, латуни, пластмасс с помощью соединительных деталей. Металлополимерные трубы разрешено применять при проекти­ровании и монтаже систем отопления и горячего водоснабжения, расчетная температура которых не превышает 90°С, придавлении в трубах не более 1 МПа по данным нормативных документов на трубы или сертификационных испытаний.

В комплекте с металлополимерными трубами должны постав­ляться латунные соединительные детали отечественного или им­портного производетва, имеющие сертификат соответствия. 

В системах горячего водоснабжения применяется арматура обычного общепромышленного назначения, рассчитанная на ра­бочее давление до 0,6 МПа. Запорную арматуру устанавливают на ответвлениях к отдельным зданиям и сооружениям, на ответвлениях к секционным узлам и на ответвлениях от стояков в каждую квартиру. Для ремонта отдельных стояков в их верхних и нижних точках устанавливается запорная арматура с пробками для спуска из стояков воды и впуска в них воздуха.

Все трубопроводы системы горячего водоснабжения, за исклю­чением квартирных подводок и полотенцесушителей, должны иметь тепловую изоляцию. Толщина теплоизоляционного слоя конструкции должна быть не менее 10 мм.

Структура металлополимерных трубы

image120

1 — первый слой полиэтилена; 2 — клеевой слой; 3— алюминиевый слой; 4 — полиэтиленовый слой

Сортамент и масса металлополимерных труб

ф

Изготовитель, нормативно-техни­ческая документа­ция. поставщик

Номинальный диаметр, мм

Толщина стенки с допуском, мм

Толщина алюминие­вой фольги с допуском, мм

Теоретиче­ская масса 1 м длины, кг

внутренний с допуском

наружный с допуском

1

НИКИМТ (Россия), ТУ 2248-004- 07629379-97

12

16 + 0,3

2

0,2

0,095

20

25+0,3

2,5

1,2 ± 0,01

0,2

2

АО «Каучук-пласт» (Россия),

ТУ 2248-001- 29325094-97, ЗАО «Гента» (Россия)

10 ±0,2

14 + 0,15

2

0,2 ±0,02

0,092

12 ±0,2

16 + 0,15

2

0,2 + 0,02

0,105

14 ± 0,2

18 + 0,15

2

0,2 + 0,02

0,128

16 + 0,1

20 + 0,15

2,25

0,24 ± 0,02

0,15

20 + 0,1

25 + 0,2

2,5

0,24 ± 0,02

0,204

3

ТОО НПП

«ВладВЭД» (Россия)

12

16,0 ±0,3

2,25 ± 0,2

0,5 ±0,04

0,125

15

20,0 ±0,3

2,5 ± 0,2

0,5 ±0,04

0,185

20

26,0 ± 0,3

3 ± 0,2

0,7 ± 0,04

0,3

32,3 ± 0,3

3,2 ± 0,2

0,7 ± 0,04

0,39

32

40,3 ± 0,3

3,9 + 0,2

0,7 ± 0,04

0,55

40

48,0 ± 0,3

4 + 0,2

0,8 ± 0,04

0,755

50

60,0 ± 0,3

4,8 ± 0,3

0,8 ± 0,04

0,985

Б0

76,0 ± 0,3

  5,2 ±0,3

1 ± 0,04

1,480

ros-pipe.ru


.