Альтернативные источники энергии в доме как метод финансовой экономии. Установка альтернативных источников энергии


Альтернативные источники энергии

Источники энергии альтернативной энергетики – это виды точек доступа и методик переработки исходного материала, какой можно превратить в энергию для дальнейшего использования.

Альтернативные источники отличаются от стандартных тем, что дли их обработки, трансформации, создания и поставки не нужно затрачивать немало ресурсов, не наносится вред экологии.

По сути, альтернативные источники энергии заменяют те, которые основаны на применении нефти, угля, газа.

Они могут вырабатывать разную энергию, причем будто электрическую энергию, так и другую, которая представляет заинтересованность для человека и общества.

Солнечная энергия

Преимущества использования этого альтернативного источника энергии можно наименовать его же недостатками. Отметим линия факторов, которые способствуют такому парадоксу:

  • при использовании солнца будто источника получения ресурсов удается извлечь буквально без затрат других ресурсов энергию. При этом ее объем несколько ограничен;
  • солнце – ключ сил. Однако погода может ограничивать объем получаемой энергии. Тем более, в зимний этап, когда соответствующая часть планеты обращена к Солнцу иной стороной, отдаленной от звезды, она получает меньше потока энергии, а значит, сезонность тоже ограничивает возможности;
  • кушать масса факторов, которые нужно учитывать при монтаже оборудования для потребления и генерации солнечной альтернативной энергии. Любая погрешность или промах может значительно повлиять на функционирование системы.

Геотермальная энергия

Многие альтернативные источники энергии уступают геотермальному отоплению по стабильности и объему получаемых ресурсов. По сути, тут даже обрабатывать ничего не нужно.

Оборудование используется сравнительно простое, а энергия, поступающая чрез землю с термальных водных источников, позволяет ублаготворить ряд потребностей в энергетических ресурсах людей.

Будто удается извлекать геотермальную энергию?

Благодаря чересчур высокой температуре в недрах земли.

На глубине возле 3 километров температура превышает 100 градусов. На поверхности устанавливается специальное оборудование, состоящее из труб, проводящих пар к турбинам.

Дальше происходит генерация тепла в энергию. Конструкция установки может быть прямого типа и переходящего.

Ровный тип предполагает предварительную очистку чета от примесей, что позволяет н нарушать структуру деталей, с которыми взаимодействует пар. Это делает срок службы станции многолетним.

Что касается переходящей конструкции, она тоже довольно удобная. Правда, пар очищается на другой стадии, когда он превращается в воду, конденсируясь. Воду уже и очищают от вредных для техники компонентов.

Если в доме проводится электричество своими руками, генерация чета, получаемого с ресурсов земли, возможна. Главное – пробурить скважину, которая поставит энергоресурс наверх.

На оборудовании удастся сэкономить, а в процессе эксплуатации такая установка альтернативного источника энергии окажется весьма экономной. Так, дымоход, топка, котельная тут попросту не нужны.

Если сообщать о недостатках геотермальной энергетики, тут есть неоднозначные мнения на этот счет.

Так, сейсмологи считают, что массовое создание скважин большенный глубины активирует сейсмоактивность. Будто результат, начнутся землетрясения, проснутся вулканы.

Кроме того, бурение может потребовать локальное оседание верхних слоев грунта, что непосредственно негативно скажется на состоянии построек на поверхности.

Ветряная энергия

Тут основным природным материалом для переработки в энергию является кинетическая функция воздушных масс.

По производительности установка, применяющая ветр для генерации энергии, напоминает солнечные батареи, поскольку ветр тоже нестабилен. Иногда он мощный, иногда его почти дудки.

Что нужно для создания станции:

  • особый двигатель;
  • генератор электротока;
  • автоматическая система управления двигателем;
  • дом для обустройства техники в закрытом помещении.

Волновая энергия

Тут потенциальная альтернативная энергия волн трансформируется в кинетическую. Поэтапно этот ключ энергии превращается в усилие, за счет которого работает генератор.

Если сравнивать волновую энергию и остальные источники альтернативных ресурсов, то тут мощность будет куда более высокой.

К тому же, говоря о стабильности, важно отметить стабильное получение ресурсов за счет постоянного движения водных масс океанов.

В отличие от ветра и солнечных лучей, океан практически вовек не останавливается в волновой активности.

Истина, при обустройстве дома и проведении электричества подобный источник энергии не годится, поскольку для его создания нужно мощное и емкостное оборудование, конечно и доступ к береговой линии.

Впрочем, альтернативные источники энергии позволяют в полной мере обеспечить дом светом, а также гарантировать отопление своими руками.

Новые материалы :: Строим сами

olimp23.com

Какие альтернативные источники энергии для частного дома позволяют экономить

Потребители по всему миру ощущают на себе постоянное повышение стоимости энергоресурсов. Эксперты предсказывают, что в будущем рост тарифов продолжится. Это связано с ограниченностью ресурсов, традиционно используемых для получения энергии. В этой ситуации особое значение для владельцев частных домов приобретают автономные альтернативные источники. Они позволяют не только снизить затраты, но и стать полностью независимыми от центральных сетей, что вдвойне актуально для тех районов, где наблюдаются перебои с энергоснабжением.

Виды альтернативной энергии

Жители городских квартир по понятным причинам ограничены в выборе источников энергии. Зато частные домовладельцы в зависимости от климатических условий и окружающего ландшафта могут выбрать один из нескольких видов (или их сочетание). Автономные альтернативные источники энергии в частном доме могут быть:

  • Ветряными
  • Солнечными
  • Геотермальными
  • Биотопливными
  • Водяными
  • Осмотическими, грозовыми и т. д.

Наиболее часто используется энергия, получаемая за счёт ветра, солнечных лучей, земли и биологических отходов.

Ветряные источники

Ветряные генераторы широко применяются по всему миру. Во многих странах с их помощью вырабатывается значительная доля энергии. К их основным преимуществам относится, во-первых, то, что ветер является неисчерпаемым и бесплатным ресурсом. Во-вторых, при их работе не наносится вред окружающей среде. Подразделяются на три основных типа:

  • Малолопастные крыльчатые (имеют от 2 до 4 лопастей, обладают высоким КПД, однако эффективны только при устойчивом сильном ветре и создают много шума при работе)
  • Многолопастные крыльчатые (имеют до 24 лопастей, эффективны даже при достаточно слабом ветре (до 4 м/с), не создают большого шума при работе, но обладают низким КПД)
  • Карусельные (роторные) — характеризуются теми же достоинствами и недостатками, что и многолопастные

Малолопастные генераторы при устойчивом ветре способны полностью обеспечить потребности в электроэнергии в небольших домах. Устройства второго и третьего типов лучше использовать только в качестве дополнительного источника.

Работа установок построена на передаче вращения от ветряного колеса к валу генератора (ветротурбины). Схема также включает в себя аккумуляторы и инверторы (первые используются для накопления, вторые — для преобразования тока). Поскольку ветер — непостоянная величина, энергия от таких генераторов часто используется только для нагрева воды в бойлерах отопительных и водопроводных систем. Это избавляет от необходимости покупки дорогостоящих аккумуляторов.

В зависимости от мощности, стоимость электростанции варьируется от 1000 до 10 000 долларов. Система требует установки высокой мачты с надёжным фундаментом и дренажем. Важно учитывать, что вследствие обледенения лопастей в зимний период КПД генератора может существенно снизиться. По причине повышенного уровня шума размещать станцию рекомендуется подальше от жилья.

Солнечная энергия

Гелиосистемы используются в самых разных отраслях. В большинстве случаев энергия солнца служит источником тепла для нагрева воды в системах отопления и водоснабжения. Такие устройства отличаются большим разнообразием: от простейших, выполненных по принципу обычного парника (их можно сделать своими руками), до более сложных, включающих вакуумные стеклянные трубки и тепловые насосы (изготавливаются только в заводских условиях).

Установки для нагрева воды делятся на пассивные и активные. В первом случае лучи солнца падают непосредственно на нагреваемый объект. Регулировать температуру при этом невозможно, однако такие системы выгодно отличает дешевизна и простота конструкции.

Активные гелиосистемы включают в себя солнечный коллектор, который преобразует лучи в тепловую энергию. Он соединён со стеклянными трубками, заполненными специальным теплоносителем. Внутри них установлены светопоглощающие чёрные стержни. Стоимость коллектора — до 4000 долларов. В систему также входит насос, трубопровод с термоизоляцией и теплообменник. Установка монтируется под определённым наклоном (угол зависит от региона). Такие гелиосистемы эффективны даже зимой.

Солнечные лучи можно использовать и для электроснабжения дома. Для этого потребуется монтаж достаточно сложной системы, состоящей из модуля солнечных батарей (изготавливается на основе фотоэлектрических панелей), контроллера, инвертора и аккумуляторов. Основным препятствием к повсеместному использованию является высокая стоимость: электростанция небольшой мощности (2 кВт) обойдётся примерно в 55 000 долларов. Некоторые мастера изготавливают фотоэлектрические панели самостоятельно. Это позволяет сэкономить, но приводит к существенному (до 40%) снижению КПД.

К недостаткам гелиосистем относится недостаточная эффективность в регионах с низкой солнечной активностью и неработоспособность в тёмное время суток.

Геотермальные источники

Тепло и электроэнергию можно получать прямо из земли. Основными элементами таких схем являются тепловые насосы. Они подразделяются на три типа:

  • Грунтовые — для сбора тепла используется горизонтальный коллектор или вертикальный зонд; в холодном климате используются только как дополнительный источник отопления
  • Вводяные — используют тепловую энергию подземных источников
  • Воздушные — подходят только для регионов с тёплым климатом

Функционирование системы построено на получении тепла из низкотемпературного потенциала. В основе лежат процессы, обратные тем, что происходят в холодильнике. Жидкость, циркулирующая в замкнутом контуре и обладающая низкой температурой кипения, нагревается от окружающей среды, после чего конденсируется и передаёт тепло в отопительную систему. Аналогичным способом вырабатывается электроэнергия.

Следует отметить, что такие системы обходятся достаточно дорого (до нескольких десятков тысяч долларов), но при этом не обладают высокой эффективностью. С их помощью теплоноситель можно нагреть максимум до 60 градусов. В целях экономии некоторые мастера изготавливают тепловые насосы из холодильных компрессоров. Если использовать систему для выработки электроэнергии, то можно получить ток в 5−6 раз больше израсходованного.

Биогазовая энергетика

В качестве топлива используется газ, выделяемый при брожении отходов растительного и животного происхождения (навоза, прогнившего зерна, остатков пищи и т. д.) в условиях замкнутого пространства без доступа воздуха. Для этого процесса установки оснащаются специальными емкостями. Получаемый газ более чем наполовину состоит из метана. Оставшаяся часть — примеси: углекислый газ, сероводород, азот и др.

Тепло и электричество из газа получают при помощи когенерационных установок. Такие системы целесообразно устанавливать только при достаточном постоянном наличии биоматериала. В холодном климате эффективность их работы снижается.

Прочие источники

Помимо перечисленных, доступны и другие источники альтернативной энергии для дома.К ним относятся: течение воды, энергия молнии, приливов и отливов и тому подобное. Однако, они не получили широкого распространения в энергоснабжении частных домов (по причине высокой стоимости, низкой эффективности, нестабильности и других недостатков).

Комбинирование видов энергии

Основным недостатком альтернативных источников является их недостаточно высокая эффективность. Кроме того, наряду с плюсами, у каждого из них есть и собственные дополнительные минусы. Поэтому для достижения оптимального эффекта рекомендуется источники сочетать. Так, например, владелец коттеджа с приусадебным участком может полностью обеспечить себя электроэнергией за счёт одновременного использования ветрогенератора и солнечных батарей, а отопление и горячую воду получать от теплового насоса. Впрочем, комбинация может быть и другой, всё зависит от конкретных условий.

Альтернативные системы можно сочетать любым образом, поскольку они черпают энергию из разных источников и при работе не создают взаимных помех.

Современные технологии предоставляют достаточно вариантов для обустройства альтернативного энергоснабжения дома. Это позволяет выбрать наиболее эффективную систему в соответствии с доступным бюджетом. По причине высокой стоимости окупаемость оборудования может занять несколько лет. Однако такие инвестиции могут оказаться вполне оправданными, учитывая постоянные повышения цен на энергоресурсы.

umnodom.net

Виды альтернативных источников энергии

14 Авг 2012 | Автор: matroskin83 | Комментарии отключены

Альтернативная энергетика подразумевает получение энергии нетрадиционными способами, которые не так широко распространены, но выгодны и не так сильно загрязняют окружающую среду.

Альтернативные источники энергии подразделяются на ветровые, солнечные, геотермальные, водные, космические, работающие на биотопливе, водородные и сероводородные, квантовые и распределённые.

Ветроэнергетика – один из самых безвредных видов энергетики. Для получения электроэнергии используется бесконечный ресурс – ветер. Установки, вырабатывающие таким образом электричество, делятся на автономные ветрогенераторы и ветрогенераторы, которые работают параллельно с сетью. Этот источник энергии приобретает все большую популярность и активно используется в ряде стран, например, в Дании 28% всей электроэнергии производится с помощью ветрогенераторов.

Мелкие генераторы используются для обеспечения электричеством небольших районов. Мощность такого генератора зависит от высоты над поверхностью и площадью, которую охватывают лопасти ветрогенератора.

Гелиоэнергетика (солнечная энергетика) использует солнце для получения энергии. Это также безотходное производство энергии, не приносящее вред окружающей среде. Распространенными альтернативными источниками энергии являются солнечный коллектор, солнечный водонагреватель и фотоэлектрические элементы.

• Солнечный коллектор является по сути гелиоустановкой, собирающей тепловую энергию Солнца. В отличие от солнечных батарей, которые непосредственно производят электричество, коллекторы выполняют нагревание материала-теплоносителя.• Солнечный водонагреватель — это тоже разновидность солнечного коллектора. Он производит горячую воду, поглощая солнечное излучение.• Фотоэлектрические элементы – это электронные приборы, преобразующие энергию фотонов в электричество.

Альтернативная гидроэнергетика позволяет преобразовывать в электричество энергию водного потока.• Приливные электростанции преобразуют в электричество энергию приливов.• Волновые электростанции для получения энергии используют энергию волн океана.• Мини и микро ГЭС – работают так же, как и обычные ГЭС, с тем отличием, что они устанавливаются на малых реках и имеют гораздо меньшую мощность.• Водопадные электростанции, получающие электричество, перерабатывая энергию потока падающей воды в водопаде.• Аэро ГЭС – для получения энергии используют конденсацию или сбор водяного пара из атмосферы.

Геотермальная энергетика – этот альтернативный источник вырабатывает электричество, используя тепловую энергию, содержащуюся в недрах земли.

• Тепловые электростанции работают по принципу отбора грунтовых вод высокой температуры и использования этих вод в цикле.• Грунтовые теплообменники применяют теплообмен для производства электроэнергии, отбирая тепло от грунта.

Космическая энергетика позволяет получать электроэнергию в фотоэлектрических элементах, которые находятся на орбите Земли. Электроэнергия на землю передается в виде микроволнового излучения.

Водородная энергетика и сероводородная энергетика работает на топливных элементах, которые позволяют исключить малоэффективные процессы горения, идущие с большими потерями, и напрямую получать электричество из энергии топлива, так называемым „холодным” горением.

Биотопливо – один из самых доступных альтернативных источников энергии. Это топливо получается в результате переработки отходов. Биотопливо разделяют на жидкое, твердое и газообразное.

К жидкому биотопливу относится биодизель, биоэтанол, биометанол. Это топливо предназначено для двигателей внутреннего сгорания и применяется на таких установках, как дизельные генераторы. Дизельный генератор способен обеспечивать электроэнергией объекты различной величины несколько часов беспрерывно. Это один из самых распространённых и доступных альтернативных источников электроэнергии. Дизельный генератор не требует больших затрат и особых знаний, в отличие от других альтернативных установок.

Ещё один альтернативный источник энергии – газопоршневая теплоэлектростанция. Она использует биогаз для производства энергии и считается экологически безопасной.

На валу газопоршнего двигателя стоит обычный генератор. Двигатель выделяет тепло, которое используется газопоршневой электростанцией.

Газотурбинные технологии – это современный эффективный и альтернативный источник электрической энергии, экологически чистый, а потому получивший широкое распространение.

Основная цель альтернативной энергетики – снизить выброс вредных веществ в атмосферу, при этом обеспечив максимально эффективный способ получения электроэнергии.

dieselco.ru

ПЛЮСЫ И МИНУСЫ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ

ПЛЮСЫ И МИНУСЫ АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ

Дементьева Д.А. 1

1МБОУ СОШ №92 г.Кемерово

Симоненко Л.С. 1

1МБОУ СОШ №92 г.Кемерово

Текст работы размещён без изображений и формул.Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1.Введение

Использование энергии является основой развития человеческого общества и позволяет ему изменять окружающую среду.

Данная работа носит поисково- аналитический характер.

Цель работы: Найти плюсы и минусы альтернативных источников энергии

Задачи работы:

Узнать, какие бывают альтернативные способы выработки энергии.

Узнать, как они работают.

Можно ли их использовать в повседневной жизни.

Изучить плюсы и минусы их применения.

2.Проблема поиска новых способов выработки энергии

К традиционным источникам относят средства выработки энергии, функционирующие на нефти, угле и природном газе. Все это - невозобновимые источники. Планета обладает ограниченными их запасами. И это ставит перед человечеством проблему поиска новых способов выработки энергии, ведь через некоторое время эти запасы могут закончиться. Энергосберегающие технологии и охрана природы - важнейший аспект промышленности ближайшего времени.

Мы мало задумываемся о том, как загрязняют мировое пространство такие отрасли, как металлургия, добыча полезных ископаемых, традиционная большая энергетика (как топливная, так и нетопливная).

К так называемым нетрадиционным источникам энергии относятся геотермальная энергия, энергия солнца, энергия ветра, морских волн, тепла морей и океанов, а также малая гидроэнергетика - морские приливы и отливы, биогазовые установки и другие преобразователи энергии.

3.Геотермальные электростанции

Геотермальные электростанции, в которых используется энергия теплой воды

В СССРпервая геотермальная электростанция была построена в 1966 году на Камчатке, в долине реки Паужетка. Её мощность — 12 МВт.

Главная из проблем, которые возникают при использовании подземных термальных вод, заключается в необходимости возобновляемого цикла поступления воды (обычно отработанной) в подземный водоносный

горизонт. В термальных водах содержится большое количество солей различных токсичных металлов и химических соединений, что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

4.Солнечные электростанции и батареи

Солнечные электростанции и батареи - используется энергия солнца.

Солнечная энергетика — направление нетрадиционнойэнергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов.

Солнечное излучение - один из наиболее перспективных источников энергии будущего. Преобразование солнечной энергии может осуществляться двумя основными способами: фотоэлектрическим (прямое преобразование световой энергии в электрическую) и фототермическим (преобразование световой энергии в тепловую, а затем, при необходимости, в электрическую).

Фотоэлектрические станции – это установки, принцип действия которых состоит в прямом преобразовании солнечного света в постоянный электрический ток. Энергия может использоваться как напрямую, так и запасаться в аккумуляторных батареях. Для получения переменного тока необходимо использовать преобразователи – инверторы. Солнечные электростанции могут подключаться к электрическим сетям и передавать в них выработанную энергию, а также использоваться в качестве автономного или резервного источника питания.

Солнечные батареи (фотоэлектрический преобразователь) или ФЭП служат для преобразования солнечной энергии в электрическую.

Самый большой недостаток к использованию солнечной энергии является стоимость технологии. Солнечные фотогальванические элементы и солнечные коллекторы все еще очень дороги. Использовать такую технологию для того, чтобы генерировать электричество в широком масштабе слишком дорого, по крайней мере вначале двадцать первого столетия. Другая большая проблема с солнечной технологией состоит в том, что солнечная энергия может быть не доступна в определённое время суток, от погодных условий и в определённых участках на Земле. Густой облачный покров может ограничить использование некоторых систем солнечной энергии. Некоторые системы могут использоваться в принципе, если прямой солнечный свет не доступен в полном объеме. В большинстве областей мира могут использоваться только устройства для получения солнечной энергии низкой мощности из-за нехватки прямого солнечного света.

5.Ветроэнергетические установки

Ветроэнергетические установки - используется энергия ветра

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) - устройство для преобразования кинетической энергии ветра в электрическую.

Ветроэлектрические установки могут работать как совместно с сетью, так и в автономном режиме. Принцип действия ветрогенераторов заключается в следующем: ветер раскручивает лопасти, приводя в движение вал электрогенератора. Генератор, в свою очередь, вырабатывает электрическую энергию, которая подаётся на контроллер, где преобразуется до нормативных показателей частоты и напряжения.

Основное отличие от традиционных тепловых и атомных источников энергии заключается в полном отсутствии сырья и отходов. Соответственно, ветрогенераторы не наносят никакого вреда окружающей среде.

Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети,– в результате получается ветровая электростанция (ВЭС). Единственное важное требование для ВЭС – это высокий среднегодовой уровень ветра. Небольшие ветрогенераторы могут эффективно работать и при относительно низких скоростях ветра, поэтому имеют более широкую географию установки. Активно развивается индустрия домашних ветрогенераторов. К примеру, для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 2 кВт при скорости ветра 8 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором.

Существуют два основных типа ветрогенераторов: с вертикальной осью вращения и с горизонтальной. Эффективность ветрогенераторов с горизонтальной осью вращения выше, чем у вертикальных ветрогенераторов.

Ветер дует почти всегда неравномерно. Значит, и, генератор будет работать неравномерно, отдавая то большую, то меньшую мощность, ток будет вырабатываться переменной частотой, а то и полностью прекратится, и притом, возможно, как раз тогда, когда потребность в нем будет наибольшей. В итоге любой ветроагрегат работает на максимальной мощности малую часть времени, а в остальное время он либо работает на пониженной мощности, либо просто стоит. Многие считают, что при использовании большой ветроэнергетики возникают низкочастотные колебания, губительные для всего живого. Многие птицы якобы пострадали от ветрогенераторов, а в навигационное мышление рыб вносят свои коррективы морские ветропарки.

6. Приливные электростанции

Приливная электростанция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 18 метров.

В России c 1968 года действует экспериментальная ПЭС в Кислой губе на побережье Баренцева моря. На 2009 год её мощность составляет 1,7 МВт.

ПЭС «Ля Ранс», построенная в эстуарии р. Ранс (Северная Бретань) имеет самую большую в мире плотину, ее длина составляет 800 м. Плотина также служит мостом, по которому проходит высокоскоростная трасса, соединяющая города Св. Мало и Динард. Мощность станции составляет 240 МВт.

7.Энергия от тренажеровИдея применения зеленой энергии находит все более проникающее влияние на все сферы нашей жизни. Конструктивной идеей выработки зеленой энергии является использование энергии от тренажеров в спортивном зале для потребительских нужд.

Используя генераторы, подключенные к велотренажерам и беговым дорожкам, тренажерные залы производят достаточно электричества для самоснабжения путем получения энергии от тренировок их посетителей.

8.Необыкновенные зарядники телефона

В совсем недалеком прошлом вновь обрести мобильную связь с севшим аккумулятором телефона было очень проблематично. Ведь большинство производителей мобильных телефонов делают разъемы под зарядное устройство каждый под свой стандарт, да и постоянно носить с собой зарядник тоже довольно неудобно.

Но теперь современные технологии предлагают множество решений данной проблемы, большинство из которых не только позволяют вам в

любое время и в любом месте зарядить свой телефон, но еще и являются частью популярной сейчас "зеленой идеи".

1.Термоэлектрический преобразователь

Иркутские ученые разработали устройство, которое способно давать электричество за счет разницы температур. Это термоэлектрический преобразователь, включающий в себя тонкую пластину с нанокомпозитными добавками. Если положить его на горячую плиту, а сверху поставить стакан с холодной водой, загорается фонарик. Этой энергии хватит, чтобы зарядить телефон или, например, автомобильный аккумулятор.

2. Зарядка от энергии ног

Для продления автономной работы мобильного телефона в практически любых условиях группа американских ученых создала прототип генератора, вырабатывающего электричество для питания мобильного телефона во время ходьбы. Он представляет собой небольшой аппарат, закрепляемый на человеческом колене с помощью скобок и вырабатывающий электричество во время сгибания ноги в колене. Все эти устройства призваны облегчить жизнь пользователям мобильных телефонов в условиях отрыва от сетей переменного тока и довольно неплохо справляются со своими обязанностями.

Даже офисным сотрудникам приходится время от времени передвигаться на своих двоих, так почему бы не использовать и этот источник альтернативной энергии? Специальный девайс, встроенный в обувь, может аккумулировать энергию для последующей зарядки мобильных устройств. Одним из последних проектов, реализующих эту идею, является SolePower. В его рамках разрабатываются обувные стельки, являющиеся резервным источником питания для смартфонов.

Разработчики SolePower из США решили оптимизировать инновацию и сделать зарядным устройством не саму обувь, а стельки, соединенные с браслетом-батареей, закрепляемой на ноге. Заряженную таким образом батарею можно подключить мобильному телефону, аудио-плееру, GPS-навигатору и прочим устройствам. Стельки же, соответственно, можно вставлять в любую обувь, необходимую в зависимости от ситуации. Для того, чтобы обеспечить заряд питания, необходимый iPhone, человеку с такими стельками надо пройти от 4 до 8 км. При этом стельки еще и водонепроницаемые, то есть вполне могут использоваться в походных условиях или в случае стихийных бедствий.

3.Зарядка с помощью дыхания

Когда мы просто дышим, наше тело проделывает работу по перемещению воздушной массы. Чтобы организм не тратил энергию в пустоту, ее можно использовать… для зарядки портативной техники! Именно такое применение имеет маска AIRE.

Этот девайс предполагает использование дыхания для производства электроэнергии. В маску встроено несколько ветряных турбин, движение которых происходит, когда человек дышит. AIRE оснащен также генератором, преобразователем энергии и шнуром, с помощью которого этот девайс можно подключить к своему мобильному телефону.

Заряжать гаджеты пользователи AIRE смогут практически в каждую секунду своей жизни: во время прогулок, пробежек, рабочего дня (если вы не боитесь походить на Бэйна и Дарта Вейдера в одном лице). Снимать ее можно разве что для приема пищи и питья. Однако создатели AIRE предполагают, что это неординарное устройство будет использоваться, в первую очередь, в двух ситуациях: во время сна, когда человек не обращает внимания на наличие маски на своем лице, и во время путешествий, когда рядом нет других источников электроэнергии.

4. Велосипедная зарядка

Здесь проблема решается еще проще. Любители покататься на велосипеде совершают довольно много работы в процессе, так почему бы не использовать ее для получения дополнительной энергии?

Цилиндр миниатюрной динамо-машины крепится у колеса, а зарядное устройство и держатель для телефона — на руль велосипеда. Уже на скорости 12 км/ч эффективность устройства становится такой же, как у обычных зарядных устройств, работающих от электросети.

5. Ручная динамо-зарядка

Эта идея буквально лежала на поверхности и в итоге была реализована несколькими командами. Хотите зарядить севший аккумулятор? Легко, но придется немного поработать. Ручная динамо-зарядка применения физической силы. Вращая ручку приспособления, можно получить драгоценную энергию, способную подзарядить мобильный телефон или любое USB-устройство. Минута вращения создаст достаточно заряда для совершения короткого звонка или отсылки нескольких текстовых сообщений.

6. Ветряные микрогенераторы

Размах лопастей одного такого микрогенератора составляет всего 1,8 мм.

Сделаны они из никелевого сплава, который обеспечивает достаточную

гибкость для того, чтобы выдержать сильный порыв ветра, необходимого для получения энергии. Изобретение в теории позволяет заряжать телефон

или другой гаджет в любом месте, просто помахав им в воздухе или оставив полежать на ветру. Более того, открытие американских ученых сможет составить конкуренцию традиционным солнечным панелям — если покрыть массивом таких ветрогенераторов крышу жилого дома, электроэнергии будет производиться достаточно для бытовых нужд.

Производство ветрогенераторов не требует больших инвестиций, а конечный продукт, по подсчетам ученых, будет стоить недорого. Генераторы уже были успешно испытаны, и сейчас ученые из Техасского университета решают вопрос, как лучше поставить их на коммерческую основу.

7. Зарядное устройство с турбиной

Еще в 2009 году оператор сотовой связи Orange предложил своим абонентам необычную разработку под названием Orange Power Pump. Это устройство, по сути, представляет собой ножной насос со встроенной турбиной, которая и используется для получения электричества и зарядки аккумулятора.

Такой девайс может пригодиться в путешествии или на пляже – аккумулятор смартфона или планшета можно зарядить, пока вы будете подкачивать шины, надувать лодку или матрац.

7. Солнечные батареи в непривычных местах

Солнечная энергия – это энергия возобновляемого источника, который, в принципе, можно считать вечным. Во многих странах солнечные батареи широко используются для бытовых нужд, например, их размещают на крышах домов, а полученную энергию используют для отопления и подогрева воды.

Похожая идея лежит в основе разработки наушников OnBeat с солнечной батареей, которые позволяют не только слушать музыку, но и подзаряжать подключенное к ним мобильное устройство. В девайс встроен гибкий солнечный элемент с выходной мощностью в 0,55 ватт, который охватывает часть головы. Получаемая солнечная энергия сохраняется в

двух ионно-литиевых батареях одинакового веса в каждом из наушников, которые также могут заряжаться по USB и просто от розетки или компьютера.

9.Вывод

Возобновляемая энергетика пока не может в полной мере приравняться к зеленой. К тому же, у нее есть достаточное количество противников в лице экологов, политологов, энергетиков.

В настоящее время в мире всего 1% энергопотребления приходится на альтернативные источники.

Несмотря на это, развитие науки позволит создавать более дешевые и

экологичные альтернативные установки, а значит существенно снизит

и стоимость такой энергии и вред для окружающей среды.

Поэтому переход к альтернативным источникам энергии

неизбежен и они займут достойное место и в нашей повседневной жизни и в промышленности.

10.Источники информации

http://www.3dnews.ru/562396/ ,

http://openutilities.ru/analytics/item/621/ ,

http://www.apn.ru/publications/article17132.htm,

http://altenergo.su/,

http://prikol.i.ua/view/944755/,

http://www.mobiledevice.ru/

http://greenevolution.ru/tag/vozobnovlyaemye-istochniki-energii/

http://www.planetseed.com/ru/relatedarticle/

http://ru.wikipedia.org/wiki/

 

Просмотров работы: 324

school-science.ru

Альтернативные источники энергии / Социальная сеть

Это явление было правильно объяснено и обобщено французским физиком Ампером, который установил, что магнитные свойства любого тела являются следствием того, что внутри него протекают замкнутые электрические токи. (Или, говоря современным языком, любой электрический ток создает вокруг проводника магнитное поле.) Таким образом, любые магнитные взаимодействия можно рассматривать как следствия электрических. Однако, если электрический ток вызывает магнитные явления, естественно было предположить, что и магнитные явления могут вызвать появление электрического тока. Долгое время физики в разных странах пытались обнаружить эту зависимость, но терпели неудачу. В самом деле, если, к примеру, рядом с проводником или катушкой лежит постоянный магнит, никакого тока в проводнике не возникает. Но если мы начнем перемещать этот магнит: приближать или удалять его от катушки, вводить и вынимать магнит из нее, то электрический ток в проводнике появляется, и его можно наблюдать в течение всего того периода, во время которого магнит движется. То есть электрический ток может возникать только в переменном магнитном поле. Впервые эту важную закономерность установил в 1831 году английский физик Майкл Фарадей.

Проведя серию опытов, Фарадей открыл, что электрический ток возникает (индуцируется) во всех тех случаях, когда происходит движение проводников относительно друг друга или относительно магнитов. Если вводить магнит в катушку или, что то же самое, перемешать катушку относительно неподвижного магнита в ней индуцируется ток. Если подвигать одну катушку к другой, через которую проходит электрический ток, в ней также появляется ток. Того же эффекта можно добиться при замыкании и размыкании цепи, поскольку в момент включения и выключения ток нарастает и убывает в катушке постепенно и создает вокруг нее переменное магнитное поле. Поэтому если поблизости от такой катушки находится другая, не включенная в цепь, в ней возникает электрический ток.

Открытие Фарадея имело огромные последствия для техники и всей человеческой истории, так как теперь стало ясно, каким образом механическую энергию превращать в электрическую, а электрическую — обратно в механическую. Первое из этих преобразований легло в основу работы электрогенератора, а второе — электродвигателя. Впрочем, сам факт открытия еще не означал, что все технические задачи на этом пути разрешены: около сорока лет ушло на создание работоспособного генератора и еще двадцать лет на изобретение удовлетворительной модели промышленного электродвигателя. Но главное: принцип действия двух этих важнейших элементов современной цивилизации сделался очевиден именно благодаря открытию явления электромагнитной индукции.

Первый примитивный электрогенератор создал сам Фарадей. Для этого он поместил медный диск между полюсами N и S постоянного магнита. При вращении диска в магнитном поле в нем наводились электрические токи. Если на периферии диска и в его центральной части помещали токоприемники в виде скользящих контактов, то между ними появлялась разность потенциалов, как на гальванической батарее. Замыкая цепь, можно было наблюдать на гальванометре непрерывное прохождение тока.

Установка Фарадея годилась только для демонстраций, но вслед за ней появились первые магнитоэлектрические машины (так стали называть электрогенераторы, в которых использовались постоянные магниты), рассчитанные на создание работающих токов. Самой ранней из них была магнитоэлектрическая машина Пиксии, сконструированная в 1832 году.

Принцип ее действия был очень прост: мимо неподвижных, снабженных сердечниками катушек E и E' двигались посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита AB, вследствие чего в катушках индуцировались токи. Недостатком машины Пиксии было то, что в ней приходилось вращать тяжелые постоянные магниты. В последующем изобретатели обычно заставляли вращаться катушки, оставляя магниты неподвижными. Правда, при этом приходилось решать другую задачу: каким образом отвести во внешнюю цепь ток с вращающихся катушек? Это затруднение, однако, было легко преодолимо. Прежде всего, катушки соединяли между собой последовательно одними концами их проводки. Тогда другие концы могли служить полюсами генератора. Их соединяли с внешней цепью при помощи скользящих контактов.

Скользящий контакт устроен следующим образом: на оси машины крепились два изолированных металлических кольца b и d, каждое из которых было соединено с одним из полюсов генератора. По окружности этих колец вращались две плоские металлические пружины B и B', на которые была заключена внешняя цепь. При таком приспособлении уже не было никаких затруднений от вращения оси машины — ток переходил из оси в пружину в месте их соприкосновения.

Еще одно неудобство заключалось в самом характере тока электрогенератора. Направление тока в катушках зависит от того, приближаются они к полюсу магнита или удаляются от него. Из этого следует, что ток, возникающий во вращающемся проводнике, будет не постоянным, а переменным. По мере приближения катушки к одному из полюсов магнита сила тока будет нарастать от нуля до какого‑то максимального значения, а затем — по мере удаления вновь уменьшаться до нуля. При дальнейшем движении ток изменит свое направление на противоположное и опять будет нарастать до какого‑то максимального значения, а потом убывать до нуля. Во время следующих оборотов этот процесс будет повторяться. Итак, в отличие от электрической батареи, электрогенератор создает переменный ток, и с этим приходится считаться.

Как известно, большинство современных электрических приборов созданы таким образом, чтобы питаться от сети переменного тока. Но в XIX веке переменный ток был неудобен по многим причинам, прежде всего психологическим, поскольку в прежние годы привыкли иметь дело с постоянным током. Впрочем, переменный ток можно было легко преобразовать в прерывистый, имеющий одно направление. Для этого достаточно было с помощью специального устройства — коммутатора — изменить контакты таким образом, чтобы скользящая пружина переходила с одного кольца на другой в тот момент, когда ток меняет свое направление. В этом случае один контакт постоянно получал ток одного направления, а другой — противоположного.

Подобное устройство пружины и контакта кажется, на первый взгляд, очень сложным, на деле же оно очень просто. Каждое кольцо коммутатора делали из двух полуколец, концы которых отчасти заходят друг за друга, а пружины были настолько широкими, что могли скользить по двум рядом помещенным полукольцам. Половины одного и того же кольца помещались на некотором расстоянии друг от друга, но были соединены между собой. Так, полукольцо a, прикасающееся к пружине c, было соединено с полукольцом a', по которому скользила c'; точно так же соединялись между собой b и b', так что при одном полуобороте пружина c, касающаяся a, переходила на b, а пружина c' переходила с b' на a'. Нетрудно было установить пружину таким образом, чтобы она переходила с одного кольца на другое в тот момент, когда в обмотке катушки менялось направление тока, и тогда каждая пружина все время давала ток одного и того же направления. Другими словами, они представляли из себя постоянные полюса; одна — положительный, другая — отрицательный, в то время как полюса катушек давали переменный ток.

Электрогенератор прерывистого постоянного тока вполне мог заменить неудобную во многих отношениях гальваническую батарею, и потому вызвал большой интерес у тогдашних физиков и предпринимателей. В 1856 году французская фирма «Альянс» даже наладила серийный выпуск больших динамо‑машин, приводившихся в действие от парового двигателя. В этих генераторах чугунная станина несла на себе неподвижно укрепленные в несколько рядов подковообразные постоянные магниты, расположенные равномерно по окружности и радиально по отношению к валу. В промежутках между рядами магнитов на валу были установлены несущие колеса с большим числом катушек. Также на валу был укреплен коллектор с 16‑ю металлическими пластинами, изолированными друг от друга и от вала машины. Ток, наводимый в катушках при вращении вала, снимался с коллектора при помощи роликов. Одна такая машина требовала для своего привода паровой двигатель мощностью 6‑10 л.с. Большим недостатком генераторов «Альянс» было то, что в них использовались постоянные магниты. Так как магнитное действие стальных магнитов сравнительно невелико, то для получения сильных токов нужно было брать большие магниты и в большом числе. Под действием вибрации сила этих магнитов быстро ослабевала. Вследствие всех этих причин КПД машины всегда оставался очень низким. Но даже с такими недостатками генераторы «Альянса» получили значительное распространение и господствовали на рынке в течение десяти лет, пока их не вытеснили более совершенные машины.

Прежде всего немецкий изобретатель Сименс усовершенствовал движущиеся катушки и их железные сердечники. (Эти катушки с железом внутри получили название «якоря» или «арматуры».) Якорь Сименса в форме «двойного Т» состоял из железного цилиндра, в котором были прорезаны с противоположных сторон два продольных желоба. В желобах помещалась изолированная проволока, которая накладывалась по направлению оси цилиндра. Такой якорь вращался между полюсами магнита, которые тесно его обхватывали.

По сравнению с прежними новый якорь представлял большие удобства. Прежде всего, очевидно, что катушка в виде цилиндра, вращающегося вокруг своей оси, в механическом отношении выгоднее катушки, насаженной на вал и вращавшейся вместе с ним. По отношению к магнитным действиям якорь Сименса имел ту выгоду, что давал возможность очень просто увеличить число действующих магнитов (для этого достаточно было удлинить якорь и прибавить несколько новых магнитов). Машина с таким якорем давала гораздо более равномерный ток, так как цилиндр был плотно окружен полюсами магнитов.

Но эти достоинства не компенсировали главного недостатка всех магнитоэлектрических машин — магнитное поле по‑прежнему создавалось в генераторе с помощью постоянных магнитов. Перед многими изобретателями в середине XIX века вставал вопрос: нельзя ли заменить неудобные металлические магниты электрическими? Проблема заключалась в том, что электромагниты сами потребляли электрическую энергию и для их возбуждения требовалась отдельная батарея или, по крайней мере, отдельная магнитоэлектрическая машина. Первое время казалось, что без них невозможно обойтись. В 1866 году Вильде создал удачную модель генератора, в котором металлические магниты были заменены электромагнитами, а их возбуждение вызывала магнитоэлектрическая машина с постоянными магнитами, соединенная с тем же паровым двигателем, который приводил в движение большую машину. Отсюда оставался только один шаг к собственно динамо‑машине, которая возбуждает электромагниты своим собственным током.

В том же 1866 году Вернер Сименс открыл принцип самовозбуждения. (Одновременно с ним то же открытие сделали некоторые другие изобретатели.) В январе 1867 году он выступил в Берлинской академии с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». В общих чертах его открытие заключалось в следующем. Сименс установил, что в каждом электромагните, после того как намагничивающий ток переставал действовать, всегда оставались небольшие следы магнетизма, которые были способны вызвать слабые индукционные токи в катушке, снабженной сердечником из мягкого магнитного железа и вращавшейся между полюсами магнита. Используя эти слабые токи, можно было привести генератор в действие без помощи извне.

Первая динамо‑машина, работавшая по принципу самовозбуждения, была создана в 1867 году англичанином Леддом, но в ней еще предусматривалась отдельная катушка для возбуждения электромагнитов. Машина Ледда состояла из двух плоских электромагнитов, между концами которых вращались два якоря Сименса. Один из якорей давал ток для питания электромагнитов, а другой — для внешней цепи. Слабый остаточный магнетизм сердечников электромагнитов сначала возбуждал очень слабый ток в арматуре первого якоря; этот ток обегал электромагниты и усиливал уже имеющееся в них магнитное состояние. Вследствие этого усиливался в свою очередь ток в арматуре, а последний еще более увеличивал силу электромагнитов. Мало помалу такое взаимное усиление шло до тех пор, пока электромагниты не приобретали полной своей силы. Тогда можно было привести в движение вторую арматуру и получить от нее ток для внешней цепи.

Следующий шаг в совершенствовании динамо‑машины был сделан в том направлении, что совершенно устранили одну из арматур и воспользовались другой не только для возбуждения электромагнитов, но и для получения тока во внешней цепи. Для этого нужно было только провести ток из арматуры в обмотку электромагнита, рассчитав все так, чтобы последний мог достичь полной своей силы и направить тот же ток во внешнюю цепь. Но при таком упрощении конструкции якорь Сименса оказывался непригодным, так как при быстрой перемене полярностей, в якоре возбуждались сильные паразитические токи, железо сердечников быстро разогревалось, и это могло при больших токах привести к порче всей машины. Необходима была другая форма якоря, более соответствовавшая новому режиму работы.

Удачное решение проблемы было вскоре найдено бельгийским изобретателем Зиновием Теофилем Граммом. Он жил во Франции и служил в кампании «Альянс» столярным мастером. Здесь он познакомился с электричеством. Размышляя над усовершенствованием электрогенератора, Грамм в конце концов пришел к мысли заменить якорь Сименса другим, имеющим кольцевую форму. Важное отличие кольцевого якоря (как будет показано ниже) состоит в том, что он не перемагничивается и имеет постоянные полюса (Грамм пришел к своему открытию самостоятельно, но надо сказать, что еще в 1860 г. итальянский изобретатель Пачинотти во Флоренции построил электрический двигатель с кольцеобразным якорем; впрочем, это открытие вскоре было забыто.)

Итак, исходная точка поисков Грамма заключалась в том, чтобы заставить вращаться внутри проволочной катушки железное кольцо, на котором наведены магнитные полюсы и таким образом получить равномерный ток постоянного направления.

Чтобы представить устройство генератора Грамма, рассмотрим сначала следующее приспособление. В магнитном поле, образуемом полюсами N и S, вращаются восемь замкнутых металлических колец, которые прикреплены на равном расстоянии друг от друга к оси при помощи спиц. Обозначим самое верхнее кольцо № 1 и будем считать по направлению хода часовой стрелки. Рассмотрим сперва кольца 1‑5. Мы видим, что кольцо 1 охватывает наибольшее число силовых линий магнитного поля, так как его плоскость перпендикулярна им. Кольцо 2 охватывает уже меньшее их число, так как оно наклонено к направлению линий, а сквозь кольцо 3 линии вовсе не проходят, так как его плоскость совпадает с их направлением. В кольце 4 число пересекаемых линий увеличивается, но, как легко заметить, они вступают в него уже с противоположной стороны, так как кольцо 4 обращено к полюсу магнита другой своей стороной по сравнению с кольцом 2. Пятое кольцо охватывает столько же линий, сколько первое, но входят они с противоположной стороны. Если мы будем вращать ось, к которой прикреплены кольца, то каждое кольцо будет последовательно проходить через положения 1‑5. При этом, при переходе из 1‑го положения в 3‑е в кольце возникает ток. На пути из положения 3 к 5, если бы силовые линии пересекали кольцо с той же самой стороны, в нем появлялся бы ток противоположный тому, что в положении 1‑3, но так как при этом кольцо изменяет свое положение относительно полюса, то есть поворачивается к нему другой стороной, ток в кольце сохраняет то же направление. Зато когда кольцо проходит из положения 5 через 6 и 7 опять к 1, в нем индуцируется ток, противоположный первому.

Заменив теперь наши воображаемые кольца витками вращающейся катушки, плотно намотанной на железное кольцо, мы получим кольцо Грамма, в котором ток будет индуцироваться точно так же, как описано выше. Предположим, что проволока обмотки не имеет изоляции, но железный сердечник покрыт изолирующей оболочкой и ток, индуцируемый в витках проводника, не может проходить в него. Тогда каждый виток спирали будет подобен тому кольцу, что мы рассматривали выше, и витки в каждой половине кольца будут представлять собой последовательно соединенные кольцевые проводники. Но обе половинки кольца соединены противоположно друг к другу. Значит, токи с обеих сторон направляются к верхней половине кольца, и там, следовательно, получается положительный полюс. Подобным же образом в нижней точке, откуда берут свое направление токи, будет находиться отрицательный полюс. Можно, следовательно, сравнить кольцо с батареей, составленной из двух частей, которые соединены между собой противоположно.

Если теперь соединить противоположные концы кольца, то получится замкнутая цепь постоянного тока. В нашем воображаемом устройстве этого можно легко достичь, укрепив скользящие контакты в виде пружины так, чтобы они касались верхней и нижней части вращающегося кольца и снимали с их помощью электрический ток. Но в действительности генератор Грамма имел более сложное устройство, поскольку здесь было налицо несколько технических затруднений: с одной стороны, для того чтобы снимать ток с кольца, витки обмотки должны быть обнажены, с другой — для получения сильных токов обмотка должна быть намотана плотно и в несколько слоев. Каким же образом изолировать нижние слои от верхних?

На практике кольцо Грамма дополняло особое, довольно сложное устройство, называемое коллектором, которое и служило для отвода токов из обмотки. Коллектор состоял из металлических пластин, прикрепленных к оси кольца и имевших форму секторов цилиндра. Каждая пластина тщательно изолировалась от соседних секторов и от оси кольца. Концы каждого сектора обмотки были соединены с одной из металлических пластин, а скользящие пружины помещались так, что постоянно находились в соединении с самым верхним и самым нижним секторами обмотки. Из обеих половин обмотки получался постоянный ток, направленный к той пружине, которая была соединена с верхним сектором. Ток обходил верхнюю цепь и возвращался в кольцо через нижнюю пружину. Таким образом, полюса с поверхности самого кольца переместились на его ось, откуда ток было снимать намного проще.

В таком виде воплотилась первоначальная модель электрогенератора. Однако она оказалась неработоспособной. Как писал Грамм в воспоминаниях о своем изобретении, тут явилась новая сложность: кольцо, на которое был намотан проводник, сильно разогревалось вследствие того, что здесь тоже при быстром вращении генератора индуцировались токи. В результате перегрева изоляция то и дело выходила из строя. Ломая голову над тем, как избежать этой неприятности, Грамм понял, что железный сердечник якоря нельзя делать сплошным, так как в этом случае вредные токи оказываются слишком большими. Но разбив сердечник на части так, чтобы образовались разрывы на пути возникающих токов, можно было сильно уменьшить их вредное действие. Этого можно было добиться, изготовив сердечник не из цельного куска, а из проволоки, налагая ее в виде кольца и тщательно изолируя один слой от другого. На это проволочное кольцо затем навивалась обмотка. Каждый сектор якоря представлял собой катушку из многих оборотов (слоев). Отдельные катушки соединялись так, что проволока непрерывно обегала железное кольцо и притом в одном и том же направлении. От мест соединения каждой пары катушек шел проводник к соответствующей пластине коллектора. Чем больше было число оборотов катушки, тем большей силы ток можно было снять с кольца.

Изготовленный таким образом якорь устанавливался на ось генератора. Для этого железное кольцо с внутренней стороны снабжалось железными спицами, которые скреплялись с коллектором массивным кольцом, насаженным на ось машины. Коллектор, как уже говорилось, состоял из отдельных металлических пластин одинаковой ширины. Отдельные слои коллектора были изолированы друг от друга и от оси генератора.

Для снятия тока служили коллекторные щетки, представлявшие собой упругие латунные пластины, плотно прилегавшие к коллектору в надлежащих местах. Они соединялись с зажимами машины, откуда постоянный ток поступал во внешнюю цепь. Провод, идущий к одному из зажимов, кроме того, образовывал обмотку электромагнитов. Простейшее соединение генератора с обмотками электромагнита можно было получить, соединив один конец обмотки электромагнита с одной из щеток коллектора, например отрицательной. Другой конец обмотки электромагнита подключался к положительной щетке. При таком соединении весь ток генератора проходил через электромагниты.

В целом первая динамо‑машина Грамма представляла собой две железные вертикальные стойки, соединенные сверху и снизу стержнями двух электромагнитов. Полюсы этих электромагнитов находились в их середине, так что каждый из них был как бы составлен из двух, одинаковые полюса которых были обращены друг к другу. Можно рассматривать это устройство иначе и считать, что две половины, прилегающие к каждой стойке и соединенные ею, образовывали два отдельных электромагнита, которые соединялись одноименными полюсами сверху и снизу. В тех местах, где образовывался полюс, к электромагнитам были присоединены особой формы железные насадки, которые входили в пространство между электромагнитами и обхватывали кольцеобразный якорь машины. Две стойки, связывающие оба электромагнита и составлявшие основу всей машины, служили также для того, чтобы держать ось якоря и шкивы машины.

В 1870 году, получив патент на свое изобретение, Грамм образовал «Общество производства магнитоэлектрических машин». Вскоре было налажено серийное производство его генераторов, которые произвели подлинную революцию в электроэнергетике. Обладая всеми достоинствами самовозбуждающихся машин, они вместе с тем были экономичны, имели высокий КПД и обеспечивали практически неизменный по величине ток. Поэтому машины Грамма быстро вытеснили другие электрогенераторы и получили широкое распространение в самых разных отраслях. Тогда только появилась возможность легко и быстро преобразовывать механическую энергию в электричество.

Как уже говорилось, Грамм создавал свой генератор, как динамо‑машину постоянного тока. Но когда в конце 70‑х — начале 80‑х годов XIX века резко возрос интерес к переменному току, ему не стоило большого труда переделать его для производства переменного тока. В самом деле, для этого надо было только заменить коллектор двумя кольцами, по которым скользят пружины. Сначала генераторами переменного тока пользовались только при освещении, но с развитием электрификации они стали получать все большее применение и постепенно вытеснили машины постоянного тока. Первоначальная конструкция генератора также претерпела значительные изменения. Первая машина Грамма была двухполюсной, но в дальнейшем стали применять многополюсные генераторы, в которых обмотка якоря проходила при каждом обороте мимо четырех, шести и более попеременно установленных полюсов электромагнита. В этом случае ток возбуждался не с двух сторон колеса, как раньше, но в каждой части колеса, обращенной к полюсу, и отсюда отводился во внешнюю цепь. Таких мест (а соответственно и щеток) было столько, сколько магнитных полюсов. Затем все щетки положительных полюсов связывались вместе, то есть соединялись параллельно. Точно так же поступали и с отрицательными щетками.

По мере увеличения мощности генераторов возникла новая проблема — каким образом снять ток с вращающегося якоря с наименьшими потерями. Дело в том, что при больших токах щетки начинали искрить. Кроме больших потерь электроэнергии, это оказывало вредное воздействие на работу генератора. Тогда Грамм посчитал рациональным вернуться к самой ранней конструкции электрогенератора, примененной в машине Пиксии: он сделал арматуру неподвижной, а вращаться заставил электромагниты, ведь снять ток с неподвижной обмотки было проще. Он поместил катушки якоря на железном неподвижном кольце и заставил электромагниты вращаться внутри него. Отдельные катушки он связал между собой так, чтобы все те катушки, которые в данный момент подвергались одинаковому действию электромагнитов, были соединены последовательно. Таким образом Грамм разбил все катушки на несколько групп и каждую группу употребил для доставления тока в отдельную самостоятельную цепь. Однако возбуждающие ток электромагниты необходимо было питать постоянным током, так как переменный ток не мог вызвать в них неизменной полярности. Поэтому при каждом генераторе переменного тока необходимо было иметь небольшой генератор постоянного тока, откуда ток подводился к электромагнитам при помощи скользящих контактов.

Источник: izobreti.ru

sozidaem.info

Схемы альтернативных источников энергии.Варианты подключений

10 Апрель 2014        Главная страница » Обзоры

Для обеспечения своего дома электрической энергией необязательно использовать один альтернативный источник энергии, можно комбинировать несколько источников. Как правило, комбинируют солнечные панели с ветроустановками. Этот вариант  позволяет повысить надежность электроснабжения и вырабатывать электроэнергию даже ночью. Конечно, стоимость такой системы остается по-прежнему высокой, а следовательно и система редко применимой. Чаще можно встретить использование одного источника альтернативного электроснабжения в качестве дополнительного. В зависимости от варианта исполнения системы можно выделить несколько схем альтернативных источников энергии.

  • В данном случае выработанная от солнечных панелей или ветрогенератора электроэнергия поступает в сеть энергосистемы через сетевой инвертор. Пожалуй, наименее затратная схема. Как правило, по такой схеме юр. лица продают электроэнергию по “зеленому тарифу”. Продажа таким образом энергии физ. лицами в странах СНГ затруднительна и пока неосуществима. Приведена наглядная схема, аналогично будет выглядеть схема и с ветрогенератором.

  • В этой схеме для накопления энергии используются аккумуляторы. Это позволяет использовать энергию в то время, когда отсутствует солнце или ветер. Использование аккумуляторов в значительной мере удорожает систему, тем более что для обеспечения нормальной нагрузки необходимо значительное их количество.

 

  • Гибридная схема подключения альтернативных источников энергии, где одновременно подключены и солнечные панели и ветрогенератор. Управление потреблением осуществляется через гибридный контроллер. Пожалуй, не совсем корректно нарисована схема, инвертор тоже будет запитан через аккумуляторы. Функция инвертора преобразовывать постоянный ток в переменный, который протекает в нашей сети напряжением 220В.

  • Также в дополнение  могут применяться дизельные или бензиновые генераторы. Можно предусмотреть вариант включения генератора при отсутствии солнца или ветра.

 

Более подробно о назначении контроллера, инвертора, подключении аккумуляторов написано здесь и здесь.

 Это интересно:

Монтаж солнечных батарей (видео)

Быстро и просто делаем солнечные батареи своими руками

Это интересно:

    

www.energya.by


.