Вихревой теплогенератор – новый источник тепла в доме. Тепловой генератор отопление дома


Вихревой теплогенератор для частного дома своими руками

Отопление дома, гаража, офиса, торговых площадей – вопрос, решать который надо сразу после того, как помещение построено. И не важно, какое время года на улице. Зима всё равно придёт. Так что побеспокоиться о том, чтобы внутри было тепло необходимо заранее. Тем, кто покупает квартиру в многоэтажном доме, волноваться не о чем – строители уже всё сделали. А вот тем, кто строит свой дом, оборудует гараж или отдельно стоящее небольшое здание, придётся выбирать, какую систему отопления устанавливать. И одним из решений будет вихревой теплогенератор.

История изобретения

Вихревой сосуд

Сепарация воздуха, иначе говоря, разделение его на холодную и горячую фракции в вихревой струе – явление, которое и легло в основу вихревого теплогенератора, было открыто около ста лет назад. И как это часто бывает, лет 50 никто не мог придумать, как его использовать. Так называемую вихревую трубу модернизировали самыми разными способами и пытались пристроить практически во все виды человеческой деятельности. Однако везде она уступала и по цене и по КПД уже имеющимся приборам. Пока русский учёный Меркулов не придумал запустить внутрь воду, не установил, что на выходе температура повышается в несколько раз и не назвал этот процесс кавитацией. Цена прибора уменьшилась не намного, а вот коэффициент полезного действия стал практически стопроцентным.

Принцип действия

Сепарация воздуха в вихревом сосуде

Так что же такое эта загадочная и доступная кавитация? А ведь всё довольно просто. Во время прохождения через вихрь, в воде образуется множество пузырьков, которые в свою очередь лопаются, высвобождая некое количество энергии. Эта энергия и нагревает воду. Количество пузырьков подсчёту не поддаётся, а вот температуру воды вихревой кавитационный теплогенератор  может повысить до 200 градусов. Не воспользоваться этим было бы глупо.

Два основных вида

Несмотря на то и дело появляющиеся сообщения о том, что кто-то где-то смастерил уникальный вихревой теплогенератор своими руками такой мощности, что можно отапливать целый город, в большинстве случаев это обычные газетные утки, не имеющие под собой никакой фактической основы. Когда-нибудь, возможно, это случиться, а пока принцип работы этого прибора можно использовать только двумя способами.

Роторный теплогенератор. Корпус центробежного насоса в этом случае будет выступать в качестве статора. В зависимости от мощности по всей поверхности ротора сверлят отверстия определённого диаметра. Именно за счёт их и появляются те самые пузырьки, разрушение которых и нагревает воду. Достоинство у такого теплогенератор только одно. Он намного производительнее. А вот недостатков существенно больше.

  • Шумит такая установка очень сильно.
  • Изношенность деталей повышенная.
  • Требует частой замены уплотнителей и сальников.
  • Слишком дорогое обслуживание.

Статический теплогенератор. В отличие от предыдущей версии, здесь ничего не вращается, а процесс кавитации происходит естественным путём. Работает только насос. И список достоинств и недостатков принимает резко противоположное направление.

  • Прибор может работать при низком давлении.
  • Разница температур на холодном и горячих концах довольно велика.
  • Абсолютно безопасен, в каком бы месте не использовался.
  • Быстрый нагрев.
  • КПД 90 % и выше.
  • Возможность использования, как для обогрева, так и для охлаждения.

Единственным недостатком статического ВТГ можно считать дороговизну оборудования и связанную с этим довольно долгую окупаемость.

Как собрать теплогенератор

Инструменты для работы

При всех этих научных терминах, которые могут напугать незнакомого с физикой человека, смастерить в домашних условиях ВТГ вполне возможно. Повозиться, конечно, придётся, но если всё сделать правильно и качественно, можно будет наслаждаться теплом в любое время.

И начать, как и в любом другом деле, придётся с подготовки материалов и инструментов. Понадобятся:

  • Сварочный аппарат.
  • Шлифмашинка.
  • Электродрель.
  • Набор гаечных ключей.
  • Набор свёрл.
  • Металлический уголок.
  • Болты и гайки.
  • Толстая металлическая труба.
  • Два патрубка с резьбой.
  • Соединительные муфты.
  • Электродвигатель.
  • Центробежный насос.
  • Жиклёр.

Вот теперь можно приступать непосредственно к работе.

Устанавливаем двигатель

Электродвигатель, подобранный в соответствии с имеющимся напряжением, устанавливается на станину, сваренную или собранную с помощью болтов, из уголка. Общий размер станины вычисляется таким образом, чтобы на ней можно было разместить не только двигатель, но и насос. Станину лучше покрасить во избежание появления ржавчины. Разметить отверстия, просверлить и установить электродвигатель.

Подсоединяем насос

Насос следует подбирать по двум критериям. Во-первых, он должен быть центробежным. Во вторых, мощности двигателя должно хватить, чтобы его раскрутить. После того, как насос будет установлен на станину, алгоритм действий следующий:

  • В толстой трубе диаметром 100 мм и длиной 600 мм с двух сторон нужно сделать внешнюю проточку на 25 мм и в половину толщины. Нарезать резьбу.
  • На двух кусках такой же трубы длинной каждый 50 мм нарезать внутреннюю резьбу на половину длины.
  • Со стороны противоположной от резьбы приварить металлические крышки достаточной толщины.
  • По центру крышек сделать отверстия. Одно по размеру жиклёра, второе по размеру патрубка. С внутренней стороны отверстия под жиклёр сверлом большого диаметра необходимо снять фаску, чтобы получилось подобие форсунки.
  • Патрубок с форсункой подсоединяется к насосу. К тому отверстию, из которого вода подаётся под напором.
  • Вход системы отопления подсоединяется ко второму патрубку.
  • К входу насоса присоединяется выход из системы отопления.

Цикл замкнулся. Вода будет под давлением подаваться в форсунку и за счёт образовавшегося там вихря и возникшего эффекта кавитации станет нагреваться. Регулировку температуры можно осуществить, установив за патрубком, через который вода попадает обратно в систему отопления, шаровый кран.

Чуть прикрыв его, вы сможете повысить температуру и наоборот, открыв – понизить.

Усовершенствуем теплогенератор

Это может звучать странно, но и эту довольно сложную конструкцию можно усовершенствовать, ещё больше повысив её производительность, что будет несомненным плюсом для обогрева частного дома большой площади. Основывается это усовершенствование на том факте, что сам насос имеет свойство терять тепло. Значит, нужно заставить расходовать его как можно меньше.

Добиться этого можно двумя путями. Утеплить насос при помощи любых подходящих для этой цели теплоизоляционных материалов. Или окружить его водяной рубашкой. Первый вариант понятен и доступен без каких-либо пояснений. А вот на втором следует остановиться подробнее.

Чтобы соорудить для насоса водяную рубашку придётся поместить его в специально сконструированную герметическую ёмкость, способную выдерживать давление всей системы. Вода будет подаваться именно в эту емкость, и насос будет забирать её уже оттуда. Внешняя вода так же нагреется, что позволит насосу работать намного продуктивнее.

Вихрегаситель

Но, оказывается и это ещё не всё. Хорошо изучив и поняв принцип работы вихревого теплогенератора, можно оборудовать его гасителем вихрей. Подаваемый под большим давлением поток воды ударяется в противоположную стенку и завихряется. Но этих вихрей может быть несколько. Стоит только установить внутрь устройства конструкцию напоминающую своим видом хвостовик авиационной бомбы. Делается это следующим образом:

  • Из трубы чуть меньшего диаметра, чем сам генератор необходимо вырезать два кольца шириной 4-6 см.
  • Внутрь колец приварите шесть металлических пластинок, подобранных таким образом, чтобы вся конструкция получилась длинной равной четверти длины корпуса самого генератора.
  • Во время сборки устройства закрепите эту конструкцию внутри напротив сопла.

Пределу совершенства нет и быть не может и усовершенствованием вихревого теплогенератора занимаются и в наше время. Не всем это под силу. А вот собрать устройство по схеме, приведённой выше, вполне возможно.

pechiexpert.ru

Как сделать теплогенератор своими руками

В современных условиях приобретение собственного устройства по производству и подаче тепла обходится покупателям в достаточно крупную сумму. Для экономии средств или при отсутствии возможности приобрести теплоисточник в магазине есть резонные основания сконструировать теплогенератор своими руками. Существует несколько разновидностей подобныхпроектов. Выбор зависит от технических возможностей владельца или задач, которые требуется решить с помощью теплогенерирующей системы.

Преимущества самодельного теплопроизводства

В целом есть два типа устройств: статические и роторные. Если в первом варианте в основе конструкции есть сопло, то другие машины создают кавитацию с помощью ротора. Эти вихревые конструкции можно сравнить между собой и выбрать подходящий вариант для сборки.

Теплогенератор, своими руками сконструированный, поможет обеспечить комфортным температурным режимом загородный дом, дачу, отдельный коттедж, квартиру – при отсутствии централизованного отопления, его дефектах, перебоях или авариях. теплогенератор своими руками Также подобные устройства помогают компенсировать расходы на тепло, выбрать оптимальный вариант энергоснабжения. Они несложны в конструкционном плане и экономичны, экологически безопасны.

Как сделать теплогенератор своими руками?

Для сборки потребуются следующие материалы и инструменты:

- достаточное количество труб, соответствующих помещению по длине и ширине;- перфоратор (дрель) для сверления труб;- насос;- кавитатор любой разновидности;- манометр;- термометр для замера уровня тепла и гильзы для него;- краны для отопительных систем;- двигатель на электрической основе.

Для систем разного типа могут потребоваться дополнительные комплектующие. Но в целом самодельные отопительные приборы вполне доступны для конструирования и настройки всем желающим.

Кавитационная конструкция

Кавитационный теплогенератор своими руками можно сделать на основе центробежного насоса, который часто имеется в ванной, скважине, системе водоснабжения коттеджа. Низкая эффективность такого насоса может быть преобразована в энергию кавитационного нагревателя. Произойдет переход механической энергии в тепловую. Этот принцип часто используют в промышленности.

Кавитационный теплогенератор своими руками изготавливается на основе насоса, нагнетающего давление над соплом. Недостаток кавитацинного прибора – высокий уровень шума, большая мощность, неуместная в небольших помещениях, редкие материалы, габариты – даже миниатюрная модель займет 1,5 квадратных метра.

Обогрев на дровах

Теплогенератор на дровах, своими руками сделанный, обеспечит стабильный обогрев помещений при отсутствии централизованного отопления и наличия достаточного количества древесного топлива. Как бы ни развивались технологии и строительные методы, дровяная печь, камин спасут при перебоях с теплоснабжением.

Для отопления на дровах осуществляется монтаж камина или традиционной печки. кавитационный теплогенератор своими руками Но такие системы требуют тщательного соблюдения норм безопасности. Важно определиться с местом установки печи – массивные агрегаты не всегда можно разместить в дачных домиках.

Сделать теплогенератор на дровах своими руками – это хорошее решение при необходимости автономного обогрева комнат. Иногда это действительно единственный возможный вариант отопления.

Устройство Потапова

Теплогенератор Потапова своими руками можно сделать с использованием следующих материалов:

- шлифовальная машина для углов;- сварочный прибор;- дрель и сверла;- накидные ключи на 12 и 13;- разные болты, гайки, шайбы;- металлические уголки;- краски и грунтовки.

Теплогенератор Потапова, своими руками сделанный, позволяет вырабатывать тепло на основе электрического двигателя с использованием насоса. Это очень экономичный вариант, изготовить который достаточно просто из обычных деталей. Двигатель выбирают в зависимости от существующего напряжения – 220 или 380 В. теплогенератор на дровах своими руками С него начинают сборку, закрепляя на станине. Выполняется металлический каркас из угольника, сварка и болты, гайки помогают закрепить всю конструкцию. Делаются отверстия для болтов, внутри размещается двигатель, каркас покрывают краской. Затем подбирают центробежный насос, который будет раскручиваться двигателем. Насос устанавливают на раме, однако в данном случае потребуется соединительная муфта с токарного станка, которую можно заказать на заводе. Важно утеплить генератор специальным кожухом из жестяных листов или алюминия.

Генератор Френетта

Теплогенератор Френетта своими руками делают многие любители технических экспериментов – этот агрегат известен невероятно высоким КПД и большим разнообразием моделей. Однако многие из этих тепловых насосов достаточно дороги.

Теплогенератор Френетта своими руками можно сделать из следующих комплектующих:- ротора;- статора;- лопастного вентилятора;- вала и др.Статор и ротор выполняют роль цилиндров, один внутри другого. В большой заливается масло, малый цилиндр за счет своих оборотов нагревает всю систему. Вентилятор обеспечивает подачу горячего воздуха. Это достаточно простая модель теплового насоса, которая поддается усовершенствованию. В дальнейшем можно заменить внутренний цилиндр дисками из стали или убрать вентилятор.Высокий уровень КПД обеспечивается циркуляцией носителя тепла (масла) в закрытой системе. Нет теплообменника, но мощность нагрева достаточно высокая. Эта система экономит затраты, которые обычно нужно выделять на другие виды обогрева.

Генератор на магните

Магнитные системы обогрева относятся к вихревому типу и работают на основе индукционного нагревателя. В процессе функционирования образуется электромагнитное поле, чью энергию нагреваемые объекты поглощают и преобразовывают в тепловую. В основе такого агрегата лежит индукционная катушка – многовитковая цилиндрическая, при проходе через которую электрический ток создает магнитное поле переменного состояния.

Магнитный теплогенератор своими руками делают из элементов: сопло и манометр на выходе, термометр с гильзами, краны и индукционные элементы. Если разместить нагреваемый объект вблизи такого агрегата, создаваемый поток магнитной индукции будет пронизывать нагреваемый объект. Линии электрического поля располагаются перпендикулярно направлению магнитных частиц и идут по замкнутому кругу. теплогенератор потапова своими руками В процессе расхождения вихревых потоков электричества энергия трансформируется в тепловую – происходит нагревание объекта.

Магнитный теплогенератор, своими руками изготовленный (с инвертором), позволяет использовать силу магнитных полей для запуска насоса, быстро прогреть помещение и любые вещества до высоких температур. Такие нагреватели могут не только нагреть воду до нужной температуры, но и расплавить металлы.

Генератор на дизеле

Дизельный теплогенератор, своими руками собранный, поможет эффективно решить проблему обогрева непрямым способом. Весь обогревательный процесс в таких агрегатах полностью автоматизирован, дизельный прибор можно использовать в покрасочных камерах и промышленных нуждах. Основной вид топлива в данном случае – дизель или керосин. Устройство представляет собой пушку, которая формируется из корпуса (кожуха), топливного бака и присоединенного насоса, а также очистного фильтра и камеры сгорания. Топливный бак помещают внизу агрегата для удобства подачи ресурса.

Дизельный теплогенератор, своими руками сделанный, поможет эффективно и оперативно обогреть помещение достаточно экономичным способом. дизельный теплогенератор своими руками Также топливом может служить солярка. Дизельные агрегаты имеют форсунку, которая распыляет топливо по мере его выгорания, но в некоторых вариантах подача может производится капельным методом. При расчете на непрерывную работу заправлять генератор необходимо дважды в течение суток.

Испытание конструкции

Теплогенератор, своими руками изготовленный, будет работать максимально эффективно, если провести предварительные испытания всей системы и исправить возможные дефекты: - все поверхности должны быть защищены краской;- корпус должен быть из толстого материала из-за очень агрессивных процессов кавитации;- входные отверстия должны быть разного размера – так можно будет регулировать производительность;- гаситель колебаний нужно регулярно менять.Лучше иметь специальный лабораторный участок, где будут проходить тесты генераторов. теплогенератор френетта своими руками Оптимальный вариант – при котором вода нагревается сильнее за одинаковые отрезки времени, этому прибору можно отдать предпочтение и в дальнейшем его совершенствовать.

Отзывы владельцев

На сегодняшний день большое количество владельцев домов уже выполнило разработку собственный агрегатов. магнитный теплогенератор своими руками Если сделать теплогенератор своими руками, то, по мнению большинства умельцев, можно действительно получить экономичный вариант для обогрева помещения. Делать эти агрегаты можно буквально из подручных материалов, что позволяет всем желающим обзавестись собственным источником тепла. Некоторые модели требуют наличия заводских деталей, которые можно изготовить на заказ в промышленных условиях.

fb.ru

Вихревой теплогенератор – новый источник тепла в доме

Множество полезных изобретений осталось невостребованными. Это происходит из-за человеческой лени или из-за страха перед непонятным. Одним из таких открытий долгое время был вихревой теплогенератор. Сейчас на фоне тотальной экономии ресурсов, стремлению к использованию экологически чистых источников энергии, теплогенераторы стали применять на практике для отопления дома или офиса. Что же это такое? Прибор, который раньше разрабатывался только в лабораториях, или новое слово в теплоэнергетике.

Система отопления с вихревым теплогенератором

Принцип действия

Основой работы теплогенераторов является преобразование механической энергии в кинетическую, а затем – в тепловую.

Еще в начале ХХ столетия Жозеф Ранк обнаружил сепарацию вихревой струи воздуха на холодную и горячую фракции. В середине прошлого века немецкий изобретатель Хилшем модернизировал устройство вихревой трубы.  Спустя немного времени, русский ученый А. Меркулов запустил в трубу Ранке вместо воздуха воду. На выходе температура воды значительно повысилась. Именно этот принцип лежит в основе работы всех теплогенераторов.

Проходя  через водяной вихрь, вода образует множество воздушных пузырьков. Под воздействием давления жидкости пузырьки разрушаются. Вследствие этого освобождается какая-то часть энергии. Происходит нагрев воды. Этот процесс получил название кавитация. На принципе кавитации рассчитывается работа всех вихревых теплогенераторов. Генератор такого типа называется «кавитационный».

Виды теплогенераторов

Все теплогенераторы делятся на два основных вида:

  1. Роторный. Теплогенератор, в котором вихревой поток создается при помощи ротора.
  2. Статический. В таких видах водяной вихрь создается при помощи специальных кавитационных трубок. Давление воды производит центробежный насос.

Каждый вид обладает своими преимуществами и недостатками, на которых следует остановиться подробнее.

Роторный теплогенератор

Статором в данном устройстве служит корпус центробежного насоса.

Роторы могут быть различные. В интернете представлено множество схем и инструкций по их выполнению. Теплогенераторы – скорее научный эксперимент, постоянно находящийся в процессе разработки.

Конструкция роторного генератора

Наиболее простой принято считать конструкцию с диском. По всей поверхности ротора просверливается некоторое число отверстий. Их глубина и диаметр рассчитываются в соответствии с мощностью ротора.

Корпусом является пустотелый цилиндр. Расстояние между корпусом и вращающейся частью рассчитывается индивидуально (1.5-2 мм).

Нагревание среды происходит благодаря ее трению с корпусом и ротором. Помогают этому пузырьки, которые образуются за счет кавитации воды в ячейках ротора. Производительность таких устройств на 30% выше статических. Установки довольно шумные. Имеют повышенную изношенность деталей, за счет постоянного воздействия агрессивной среды. Требуется постоянный контроль: за состоянием сальников, уплотнителей и др. Это значительно усложняет и удорожает обслуживание. При их помощи редко монтируют отопление дома, им нашли немного другое применение – обогрев больших производственных помещений.

Модель промышленного кавитатора

Статический теплогенератор

Основной плюс данных установок в том, что в них ничего не вращается. Электроэнергия тратится только на работу насоса. Кавитация происходит при помощи естественных физических процессов в воде.

КПД таких установок иногда превышает 100%. Средой для генераторов может быть жидкость, сжатый газ, тосол, антифриз.

Разница между температурой входа и выхода может достигать 100⁰С. При работе на сжатом газе, его вдувают по касательной в вихревую камеру. В ней он ускоряется. При создании вихря, горячий воздух проходит сквозь коническую воронку, а холодный возвращается. Температура может достигать 200⁰С.

Достоинства:

  1. Может обеспечить большую разность температур на горячем и холодном концах, работать при низком давлении.
  2. КПД не ниже 90%.
  3. Никогда не перегревается.
  4. Пожаро,- и взрывобезопасен. Может использоваться во взрывоопасной среде.
  5. Обеспечивает быстрый и эффективный нагрев всей системы.
  6. Может использоваться как для обогрева, так и для охлаждения.

В настоящее время применяется недостаточно часто. Используют кавитационный теплогенератор, чтобы удешевить отопление дома или производственных помещений при наличии сжатого воздуха. Недостатком остается довольно высокая стоимость оборудования.

Теплогенератор Потапова

Популярным и более изученным является изобретение теплогенератора Потапова. Он считается статическим устройством.

Сила давления в системе создается центробежным насосом. Струя воды подается с большим напором в улитку. Жидкость начинает разогреваться благодаря вращению по изогнутому каналу. Она попадает в вихревую трубу. Метраж трубы должен быть больше ширины в десятки раз.

Схема устройства генератора

  1. Патрубок
  2. Улитка.
  3. Вихревая труба.
  4. Верхний тормоз.
  5. Выпрямитель воды.
  6. Соединительная муфта.
  7. Нижнее тормозное кольцо.
  8. Байпас.
  9. Отводная линия.

Вода проходит по расположенной вдоль стенок винтовой спирали. Дальше поставлено тормозное устройство для выведения части горячей воды. Струя немного разравнивается пластинами, прикрепленными к втулке. Внутри имеется пустое пространство, соединенное с еще одним тормозным устройством.

Вода с высокой температурой поднимается, а холодный вихревой поток жидкости спускается по внутреннему пространству. Холодный поток соприкасается с горячим через пластины на втулке и нагревается.

Теплая вода спускается к нижнему тормозному кольцу и еще подогревается благодаря кавитации. Подогретый поток от нижнего тормозного устройства проходит через байпас в отводящий патрубок.

Верхнее тормозное кольцо имеет проход, диаметр которого равен поперечнику вихревой трубы. Благодаря ему горячая вода может попасть в патрубок. Происходит смешивание горячего и теплого потока. Дальше вода используется по назначению. Обычно для обогрева помещений или бытовых нужд. Обрат присоединяется к насосу. Патрубок – к входу в систему отопления дома.

Чтобы установить теплогенератор Потапова, необходима диагональная разводка. Горячий теплоноситель нужно подавать в верхний ход батареи, а из нижнего будет выходить холодный.

Генератор Потапова собственными силами

Существует много промышленных моделей генератора. Для опытного мастера не составит труда изготовить вихревой теплогенератор своими руками:

  1. Вся система должна быть надежно закреплена. При помощи уголков изготавливают каркас. Можно использовать сварку или болтовое соединение. Главное, чтобы конструкция была прочной.
  2. На станине укрепляют электродвигатель. Его подбирают соответственно площади помещения, внешним условиям и имеющемуся напряжению.
  3. На раме крепится водяной насос. При его выборе учитывают:
  • насос необходим центробежный;
  • у двигателя хватит сил для его раскрутки;
  • насос должен выдерживать жидкость любой температуры.
  1. Насос присоединяется к двигателю.
  2. Из толстой трубы диаметром 100 мм изготавливается цилиндр длиной 500-600 мм.
  3. Из толстого плоского металла необходимо изготовить две крышки:
  • одна должна иметь отверстие под патрубок;
  • вторая под жиклер. На краю делается фаска. Получается форсунка.
  1. Крышки к цилиндру лучше крепить резьбовым соединением.
  2. Жиклер находится внутри. Его диаметр должен быть в два раза меньше ¼ части диаметра цилиндра.

Очень маленькое отверстие приведет к перегреву насоса и быстрому износу деталей.

  1. Патрубок со стороны форсунки подключается к подаче насоса. Второй подключают к верхней точке системы отопления. Остывшая вода из системы подключается к входу насоса.
  2. Вода под давлением насоса подается в форсунку. В камере теплогенератора ее температура увеличивается благодаря вихревым потокам. Потом она подается в отопление.

Схема кавитационного генератора

  1. Жиклер.
  2. Вал электродвигателя.
  3. Вихревая труба.
  4. Входящая форсунка.
  5. Отводящий патрубок.
  6. Гаситель вихрей.

Для регулирования температуры, за патрубком ставят задвижку. Чем меньше она открыта, тем дольше вода в кавитаторе, и тем выше ее температура.

При прохождении воды через жиклер, получается сильный напор. Он бьет в противоположную стену и за счет этого закручивается. Поместив в середину потока дополнительную преграду, можно добиться большей отдачи.

Гаситель вихрей

На этом основана работа гасителя вихрей:

  1. Изготавливается два кольца, ширина 4-5 см, диаметр немного меньше цилиндра.
  2. Из толстого металла вырезается 6 пластин длиной ¼ корпуса генератора. Ширина зависит от диаметра и подбирается индивидуально.
  3. Пластины закрепляются внутрь колец друг напротив друга.
  4. Гаситель вставляется напротив сопла.

Разработки генераторов продолжаются. Для увеличения производительности с гасителем можно экспериментировать.

В результате работы происходят теплопотери в атмосферу. Для их устранения можно изготовить теплоизоляцию. Сначала ее делают из металла, а поверх обшивают любым изолирующим материалом. Главное, чтобы он выдерживал температуру кипения.

Для облегчения введения в эксплуатацию и обслуживания генератора Потапова необходимо:

  • окрасить все металлические поверхности;
  • изготавливать все детали из толстого металла, так теплогенератор дольше прослужит;
  • во время сборки есть смысл изготовить несколько крышек с различным диаметром отверстий. Опытным путем подбирается оптимальный вариант для данной системы;
  • до подключения потребителей, закольцевав генератор, необходимо проверить его герметичность и работоспособность.

Гидродинамический контур

Для правильного монтажа вихревого теплогенератора необходим гидродинамический контур.

Схема подключения контура

 Для его изготовления необходимы:

  • выходной манометр, для измерения давления на выходе из кавитатора;
  • термометры для измерения температуры до и после теплогенератора;
  • сбросной кран для удаления воздушных пробок;
  • краны на входе и выходе;
  • манометр на входе, для контроля давления насоса.

Гидродинамический контур упростит обслуживание и контроль за работой системы.

При наличии однофазной сети, можно использовать частотный преобразователь. Это позволит поднять скорость вращения насоса, подобрать правильную.

Вихревой теплогенератор применяется для отопления дома и подачи горячей воды. Имеет ряд преимуществ перед другими обогревателями:

  • установка теплогенератора не требует разрешительных документов;
  • кавитатор работает в автономном режиме и не требует постоянного контроля;
  • является экологически чистым источником энергии, не имеет вредных выбросов в атмосферу;
  • полная пожаро,- и взрывобезопасность;
  • меньший расход электричества. Неоспоримая экономичность, КПД приближается к 100%;
  • вода в системе не образует накипи, не требуется дополнительная водоподготовка;
  • может использоваться как для отопления, так и для подачи горячей воды;
  • занимает мало места и легко монтируется в любую сеть.

С учетом всего этого, кавитационный генератор становится более востребованным на рынке. Такое оборудование с успехом применяют для отопления жилых и офисных помещений.

Видео. Вихревой теплогенератор своими руками.

Налаживается производство таких генераторов. Современная промышленность предлагает роторные генераторы и статические. Они оборудованы приборами контроля и датчиками защиты. Можно подобрать генератор, чтобы смонтировать отопление помещений любой площади.

Научные лаборатории и народные умельцы продолжают эксперименты по усовершенствованию теплогенераторов. Возможно, скоро вихревой теплогенератор займет свое достойное место среди приборов отопления.

Оцените статью:

elquanta.ru

Кавитационный генератор своими руками чертежи устройство

Плотно занимаясь вопросами утепления и отопления дома, мы часто сталкиваемся с тем, что появляются какие-то чудо-приборы или материалы, которые позиционируются как прорыв века. При дальнейшем изучении оказывается, что это очередная манипуляция. Яркий тому пример кавитационный теплогенератор. В теории все получается очень выгодно, но пока на практике (в процессе полноценной эксплуатации) доказать эффективность прибора не удалось. То ли времени не хватило, то ли не все так гладко.

Критический взгляд на кавитационный теплогенератор

С позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недовериеС позиции обычного пользователя кавитационный теплогенератор вызывает некоторое недоверие. Такова уж природа человека. По заявлениям изобретателей этот прибор выдает КПД в 300%. То есть агрегат, потребляя 1 кВт электрической энергии, выдает 3 кВт тепловой. Но так ли это на самом деле?

На уважаемых форумах нагрев воды кавитацией считают возможным, но эффективность этого процесса не превышает 60%. А по факту, это новшество всерьез никто не воспринимает. Да, на кавитационный теплогенератор есть патент, но это еще ничего не значит. Например, на краску-утеплитель тоже есть сертификаты и некоторые подрядчики даже пролоббировали возможность утеплять ею фасады многоэтажек в рамках государственной программы. Вот только после такого утепления люди оббили пороги судов, чтобы вернуть потраченные деньги, так как эффективность жидкой теплоизоляции не подтвердилась на практике.

Изобретатель может получить на свое детище патент, который в случае успешного внедрения будет приносить доход. Но это не дает гарантии, что прибор будет в будущем работать по заявленному алгоритму. Также нет гарантий, что его будут выпускать серийно.

При замере эффективности опытных образцов использовался какой-то хитрый способ вычисления КПД, понять который простому смертному не дано. Конкретики мало, сплошное замыливание глаз. Грубо говоря, все гладко только в теории. Если образец 100% рабочий, то почему ученым еще не присвоена Нобелевская премия?

На множественных форумах нам не удалось найти ни одного человека, который бы отапливал свой дом кавитационным генератором. Нет реальных доказательств его эффективности. В сети можно найти видео про этот прибор, но толкового объяснения, что и как работает – нет, все вокруг да около и крайне неубедительно. Мы считаем, что данный метод обогрева дома не стоит внимания.

Что такое кавитация

Кавитация – это негативное явление, которое возникает из-за перепада давления в жидкости. Когда давление воды понижается до значения давления насыщенного пара – это приводит к вскипанию. Это когда жидкость частично переходит в состояние пара, то есть образуются пузырьки. Когда давление повышается до уровня выше значения насыщенного пара – пузырьки лопаются. В результате всхлопывания возникают локальные волны давления до 7 тыс. бар. Эти волны давления и называются кавитацией.

Для утепления мансарды изнутри минватой своими руками нужно использовать паробарьерыДля утепления мансарды изнутри минватой своими руками нужно использовать паробарьеры.

 

Это касается и технологии утепления крыши изнутри минватой. Но кроме пароизоляции еще используется гидробарьер.

Последствия кавитации:

  • эрозия металлов;
  • питтинговая коррозия;
  • появление вибраций.

Изобретатели кавитационного генератора уверяют, им удалось извлечь из негативного явления пользу.

Сделать своими руками?

Вы можете купить готовый кавитационный теплогенератор, но сделать это устройство своими руками по чертежам вряд ли получиться. В лучшем случае выйдет шумная машина, в которой кавитации не будет. Кроме этого, перед тем как что-то сделать, нужно задать себе вопрос: «Зачем?». Есть масса способов обогреть дом:

Есть масса способов обогреть дом

Последствия кавитации.

Не верьте тем, кто говорит, что сделать кавитационные теплогенераторы своими руками легко и просто, потратив две копейки. Это не так. Вы потратите только свое время и не получите взамен ничего, кроме разочарования.

Выбор материалов для утепления кровли изнутри минватой относительно невеликВыбор материалов для утепления кровли изнутри минватой относительно невелик.

 

По сравнению со скатной крышей, утепление чердачного перекрытия минватой является более простым процессом.

Вот на видео ниже пример того, как народный умелец сделать данный прибор. Как думаете, можно им обогреть хоть что-нибудь?

utepleniedoma.com

обзор моделей и изготовление своими руками

Разнообразные способы экономии энергии или получения дарового электричества сохраняют свою популярность. Благодаря развитию Интернета информация о всевозможных «чудо-изобретениях» становится все доступнее. Одна конструкция, потеряв популярность, сменяется другой.

Сегодня мы рассмотрим так называемый вихревой кавитационный генератор — устройство, изобретатели которого обещают нам высокоэффективный обогрев помещения, в котором оно установлено. Что это такое? Данное устройство использует эффект нагрева жидкости при кавитации — специфическом эффекте образования микропузырьков пара в зонах локального снижения давления в жидкости, происходящем либо при вращении крыльчатки насоса, либо при воздействии на жидкость звуковых колебаний. Если Вам когда-либо доводилось пользоваться ультразвуковой ванной, то Вы могли заметить, как ее содержимое ощутимо нагревается.

Реальность использования кавитации для нагревания

кавитационные теплогенераторыВ Интернете распространены статьи о вихревых генераторах роторного типа, принцип действия которых состоит в создании областей кавитации при вращении в жидкости крыльчатки специфической формы. Жизнеспособно ли данное решение?

Начнем с теоретических выкладок. В данном случае мы расходуем электроэнергию на работу электродвигателя (средний КПД — 88%), полученную механическую энергию же частично тратим на трение в уплотнениях кавитационного насоса, частично — на нагрев жидкости вследствие кавитации. То есть в любом случае в тепло будет преобразована лишь часть потраченной электроэнергии. Но если вспомнить, что КПД обычного ТЭНа составляет от 95 до 97 процентов, становится понятным, что чуда не будет: гораздо более дорогой и сложный вихревой насос окажется менее эффективен, чем простая нихромовая спираль.

Можно возразить, что при использовании ТЭНов в систему отопления необходимо вводить дополнительные циркуляционные насосы, в то время как вихревой насос сможет сам перекачивать теплоноситель. Но, как ни странно, создатели насосов борются с возникновением кавитации, не только значительно снижающей эффективность работы насоса, но и вызывающей его эрозию. Следовательно, насос-теплогенератор не только должен быть мощнее специализированного перекачивающего насоса, но и потребует применения более совершенных материалов и технологий для обеспечения сравнимого ресурса.

Важным моментом является тот факт, что, увеличивая кавитацию, создаваемую ротором, мы увеличиваем нагрев жидкости и одновременно снижаем эффективность насоса. Реально работающий как нагреватель кавитатор уже практически не сможет перекачивать теплоноситель, а значит, точно так же, как и ТЭН, потребует применения отдельного циркуляционного насоса. При этом общая эффективность вихревого насоса все равно будет меньше КПД его привода.

Кроме роторно-вихревых насосов, можно встретить такое устройство, как статический теплогенератор («вихревая труба»). В нем используется эффект кавитации, возникающий при прохождении потока жидкости сквозь сопло Лаваля и соответствующем резком изменении скорости и давления. Но по ряду причин такое устройство неэффективно в системах отопления:

  • Чем больше перепад давлений, тем больше нагрев;
  • Для большего перепада давлений необходимо уменьшение диаметра сопла, а следовательно — увеличение гидродинамического сопротивления системы;
  • Следовательно, чем эффективнее работает сопло, тем больший запас мощности циркуляционного насоса потребуется.
Какой-либо расчет энергии, отбираемой кавитацией у потока жидкости, практически невозможен. Осознание низкой эффективности этой схемы настолько просто, что она не используется даже авторами «чудо-устройств».

Для оправдания заявляемого КПД выше единицы создатели вихревых кавитационных теплогенераторов зачастую приводят оправдания на грани комизма, вплоть до возникновения в зоне кавитации низкотемпературной ядерной реакции. Какое-либо доверие к этой технологии подобные заверения только снижают еще сильнее. Часто встречающиеся похвальные отзывы под статьями о подобных устройствах не выдерживают критики — каких-либо реальных данных, позволяющих провести расчет эффективности отопительных систем на основе вихревого насоса, они не предоставляют.

Распространенные устройства

НТГ-055Рассмотрим наиболее часто рекламируемые в Интернете вихревые насосы.

Выпускаемый НПП «ЭкоЭнергоМаш» насос НТГ-5,5 имеет следующие характеристики:

  • Мощность электродвигателя: 5,5 кВт
  • Теплопроизводительность: 6,6 кВт/ч

Здесь возникает первый вопрос к производителю: каким образом, в обход закона сохранения энергии, это устройство выделяет тепловой энергии больше, чем потребляет электрической? Точно такое же превышение тепловыделения над расходом энергии обещается и для других изделий этой фирмы.

Московская компания «Экотепло» выпускает несколько вариантов вихревого теплогенератора, наименее мощный из которых — это 55-киловаттный НТГ-055. Столь высокая мощность привода недвусмысленно указывает на реальную тепловую производительность устройств подобного класса, хотя производитель по-прежнему указывает в описании превосходство своих изделий над традиционными электрическими котлами.

В описании устройств, производимых НПО «Термовихрь», характеристики более завуалированы. Так, для трехкиловаттной модели вихревого теплогенератора заявленная теплопроизводительность составляет 3100 ккал/ч. Но, если вспомнить школьный курс физики, можно вычислить, что при стопроцентном преобразовании электрической энергии в тепловую 1 кВт*ч энергии равен 860 килокалориям, то есть идеальный вихревой насос с заявленной теплопроизводительностью потреблял бы 3,6 киловатт-часа электроэнергии. Следовательно, нам вновь предлагают устройство, часть тепловой энергии берущее из ниоткуда.

Информация от производителей таких устройств, репортаж телеканала Россия

Самодельные теплогенераторы

Тем не менее, как демонстрация интересного физического процесса, сделанный своими руками теплогенератор имеет право на жизнь.

Наиболее проста в изготовлении «вихревая трубка», или статический теплогенератор.

Конструктивно наше сопло Лаваля будет выглядеть как металлический патрубок с трубной резьбой на концах, позволяющей при помощи резьбовых муфт соединить его с трубопроводом. Для изготовления патрубка понадобится токарный станок.

схема теплогенератора кавитационного

  • Сама форма сопла, точнее, его выходной части, может отличаться по исполнению. Вариант «а» наиболее прост в изготовлении, а его характеристики можно варьировать изменением угла выходного конуса в пределах 12-30 градусов. Однако такой тип сопла обеспечивает минимальное сопротивление потоку жидкости, а, следовательно, и наименьшую кавитацию в потоке.
  • Вариант «б» более сложен в изготовлении, но за счет максимального перепада давления на выходе сопла создаст и наибольшую турбулентность потока. Условия для возникновения кавитации в этом случае являются оптимальными.
  • Вариант «в» — компромиссный по сложности изготовления и эффективности, поэтому стоит остановиться на нем.

Изготовив сопло, можно собрать экспериментальный контур, состоящий из электрического насоса, соединительных патрубков, непосредственно сопла и термометра, который мы используем для определения эффективности устройства. Для уменьшения влияния рассеивания тепла в окружающую среду патрубки лучше всего сделать короткими и замотать их теплоизоляционным материалом. Заполнив контур устройства водой и запомнив ее количество, включим насос ровно на час, чтобы по электросчетчику определить количество израсходованной электроэнергии.

Тепловую мощность самодельного теплогенератора можно определить по следующей формуле, известной по школьному курсу физики:

E=cm(T2-T1)

Где с — это удельная теплоемкость воды (4200 Дж/(кг*К)), m — ее масса, T2 — температура воды в конце работы насоса, Т1 — температура в начале. Полученную энергию, измеренную в джоулях. Сравнить ее с израсходованной электроэнергией можно, учитывая соотношение в 1000 Дж на 0.000277 киловатт-часов энергии. Иначе говоря, при стопроцентном КПД устройство, израсходовавшее 1 киловатт-час энергии, не сможет создать тепловой энергии больше 3600 килоджоулей.

ПРИМЕР: Наше устройство нагрело за час 1 литр воды с 10 до 60 градусов. Получаем тепловую энергию в 210 килоджоулей.

Посмотрите, что сообщают о таких устройствах производители

Заключение

Несмотря на громкие обещания разработчиков кавитационных теплогенераторов, их реальная эффективность при всем желании не сможет нарушать законы физики.

По этой причине к их использованию стоит относиться скорее как к демонстрации интересного физического эффекта, чем как к реальному способу экономии электроэнергии.

generatorexperts.ru

выбор и подключение, инверторные виды

Генератор для отопления дома является дополнительным оборудованием, которое предназначено для подачи и снабжения отопительной системы дома в ситуациях, когда происходят перебои с поставками электричества от основной электросети. В тот момент, когда происходит процесс отключения электроэнергии, генератор начинает в автоматическом режиме подавать энергию на отопительную систему.

Какой генератор для отопления стоит выбрать?

generator-dlya-otopleniya-chastnogo-doma.jpg

Газовый генератор для отопления частного дома

Возникает вопрос: а какой лучше выбрать отопительный генератор?

Ведь их существует несколько типов:

  1. Газовые;
  2. На бензине;
  3. С применением дизельных видов топлива.

При наличии газификации в домах, лучшим выбором будет являться генератор для отопления дома, который работает на газу. Для данного вида оборудования может применяться как сжиженный, так и природный газ.

Газовые генераторы являются наилучшим выбором даже в том случае, когда дом не подключен к системе газового отопления.

Положительными параметрами данного оборудования является довольно высокая степень экологичности, нет нужды в дополнительных денежных затратах. В том случае, когда производится подключение генератора к газовой системе самого дома, то отпадает нужда в дополнительной заправке генератора топливом.

Генераторы, использующие в качестве топлива дизельные виды, достаточно популярны среди населения. Они обладают довольно высокой степенью долговечности. Количество потребляемого топлива у такого генератора значительно меньше, чем у бензиновых аналогов.

Довольно просты в своей работе и неприхотливы. Для генераторных установок, используемых для отопления домов, характерно высокая степень их мобильности, довольно низкая ценовая стоимость: в сравнении с генераторами других видов. Плюс отличаются более меньшими размерами.

Преимущества подключения генераторной установки для отопительной системы

Положительные факторы от установки генераторной системы для отопления домов самые разнообразные.

sistema-otopleniya-doma.jpg

Установлен генератор системы для отопления дома

Попробуем рассмотреть основные из них:

  • экономичность использования данного оборудования;
  • при перебоях с электричеством не сломается отопительная система, что также приводит к снижению денежных затрат;
  • надежность и долговечность данного оборудования;
  • простота использования генераторов;
  • не возникает сбоев при работе отопительных систем.

Единственным минусом такого оборудования является его достаточно высокая ценовая стоимость, но этот недостаток в значительной мере можно перекрыть вышеперечисленными положительными параметрами.

Генератор инверторного типа для отопления

В последнее время довольно широко стал применяться генератор инверторного типа для систем отопления.

Система генератора с инвертором

Система генератора с инвертором

invertornaya-sistema-otopleniya.jpg

Инверторное отопление частного дома

Данный вид оборудования оснащен инверторной системой и наличием такого устройства, как стабилизатор электронного характера. Благодаря таким элементам, такой генератор позволяет производить электроэнергию с высокой степенью качества.

Инверторные типы генераторных установок позволяют значительным образом снизить риски поломки отопительной системы.

Инверторные генераторные установки стоят гораздо дороже установок другого типа, но зато у них имеются такие параметры, как:

  1. Высокая степень компактности, отличаются небольшим весом и размером;
  2. Не производят звуковых шумов, так как оборудованы специальными глушителями;
  3. Экономичность;
  4. Долговечность работы.

Как осуществляется подключение?

Для правильного функционирования генераторов, подключенных к системам отопления, необходимо наличие трех фаз. Иначе не будет осуществляться работа датчика пламени оборудования.

Что же придется делать, если этого параметра нет в наличии? В данном случае следует произвести процесс заземления одного из выходов. Таким образом получится искусственным путем воссоздать нужные параметры.

Все же необходимо достаточно тщательно просмотреть и изучить все нюансы прилагаемой инструкции к оборудованию: либо доверить данное подключение специалистам.

Обратите внимание!

stroika-1.ru

Теплогенераторы для частных домов и квартир

Теплогенераторы для частных домов и квартир

Теплогенераторы для водяного отопленияДля обогрева частного дома или квартиры обычно используют один теплогенератор. А для систем центрального отопления требуется не менее двух котлов. Такой прибор должен обладать главным качеством - надежностью.

Квартирные теплогенераторы снабжены дымовой трубой (высотой 5-7 м), через которую происходит вывод газов. Тяга в трубе невелика, и, чтобы избежать выхода дыма из топки, газовое сопротивление должно быть минимальным.

Теплогенераторы должны быть надежными и обладать наименьшим гидравлическим сопротивлением.

С целью увеличения циркуляционного давления теплогенератор располагают как можно ниже.

При обычном размещении прибор ставят на полу, создавая тем самым минимальную высоту. Топливо засыпают в топку через 3-5 ч, а прочищают ее несколько (1-2) раз в сутки.

Большой популярностью пользуются теплогенераторы, сделанные из чугуна или стали. Они используются в комплекте с бытовыми плитами. Если приходится выбирать между чугунным и стальным котлом, лучше предпочесть первый.

Чугунный котел обладает не только прочностью, но и относительно недорогой стоимостью.

К тому же котлы собирают из отдельных частей. При ремонте можно ограничиться заменой старой секции на новую.

Гарантийный срок службы чугунного котла - не менее 20 лет (остальные - до 10 лет).

Как уже было сказано, теплогенераторы выпускают в комплекте. В него входят: расширительный бачок, термометр в оправе и ерш для очистки газоходов. Если котел рассчитан на отопление твердым топливом, прилагаются также резак, кочерга и совок для угля.

Выпускаются также универсальные котлы. Они работают как на жидком, так и на газообразном топливе. В этом случае в комплект входит горелка с автоматом безопасности.

Для отапливания в теплогенераторах используют уголь, антрацит, кокс или малозольное топливо (в брикетах). Пользуются только топкой верхнего горения. Если для обогрева применяют дрова, необходимо увеличить высоту топки. А при отапливании газом или жидким топливом обязательно заменяют топливник.

Как правило, небольшие по объему котлы имеют маленькие конвективные поверхности. Это напрямую связано с коэффициентом полезного действия. Чтобы увеличить КПД и снизить температуру отходящих газов, котел соединяют с дымовой трубой через отопительный щиток.

При ухудшении тяги (обычно это происходит при растапливании котла) открывают заслонку прямого хода и газы идут в прямую трубу. Аналогичным образом поступают в начале отопительного сезона, т. е. перед первой топкой. Заслонку закрывают при нормальной тяге.

Сейчас чаще всего используют чугунные котлы марок КЧММ, КЧММ-2 и т. д.

Подобное устройство состоит из трех секций, на двух из них (крайних) расположена необходимая гарнитура. Сверху секции оснащены кожухом из листовой стали. Между кожухом и чугунными секциями находится теплоизоляция из листового асбеста. Колосниковая решетка этого котла частично охлаждается и имеет шуровочное устройство.

Другие разновидности котлов отличаются количеством секций и структурой колосниковой решетки.

Все котлы работают на подогреве воды до температуры 90-95 °С и с давлением до 200 кПа.

У котлов, выполненных из чугуна, есть свои минусы.

Они требуют ручной поддержки постоянной толщины слоя топлива на колосниковой решетке. Кроме того, такие котлы тяжелы и трудно поддаются монтажу.

Стальные сварные котлы выпускают в виде прямоугольной тумбы. Внутреннюю топку окружает так называемая водяная рубашка. В нижней части устройства находится колосниковая решетка с зольниковой дверцей, а наверху расположен загрузочный люк.

Существует несколько марок стальных котлов -КС-1, КС-2, КС-3 и КС-4. Все они работают на угле, антраците, а также на жидком топливе. При сжигании в таких котлах твердого топлива возникают некоторые трудности с розжигом. Чтобы избежать этого, в доме с горелкой на баллоном (сжиженном) газе используют специальное растопочное средство.

Стальной котел устроен следующим образом.На верху котла находится отвод для продуктов сгорания. Первичный воздух подается через колосниковую решетку, а вторичный проходит над слоем дров. Первичный воздух необходим для горения твердого топлива, вторичный разлагает оставшуюся часть.

Главной отличительной чертой стального котла является его многофункциональность. Подобное устройство применяют не только для отопления помещения, но и для горячего водоснабжения.

Для отопления малоэтажных домов и отдельных квартир используют стальные газовые теплогенераторы.

Они имеют небольшое гидравлическое сопротивление, поэтому могут применяться в системах водяного отопления с естественной циркуляцией.

Подобный аппарат состоит из вертикального цилиндрического резервуара, кожуха, газовой горелки с запальником и газоотводящим устройством. Между резервуаром и кожухом находится изоляция, в качестве которой используют стекловату.

Непосредственно над выходным отверстием жаровой трубы имеется тягопрерыватель. В нижней части - горелка низкого давления с закрепленнымна кронштейне запальником. Он имеет два языка пламени, один из них служит для зажигания основной горелки, а другой нагревает спай термопары.Устройство оснащено автоматическими системами безопасности и регулирования.

Водонагреватель запускают в работу только после заполнения его водой. Для этого открывают любой из водоразборных кранов горячей воды и проверяют, вытекает ли вода из него под напором.

Затем отвинчивают кран на газоходе, подносят зажженную спичку к запальнику и открывают кран. Через несколько минут кнопку электромагнита оттягивают до отказа (оставляя ее на прежнем месте). Если запальник горит, открывают кран основной горелки и зажигают ее. В случае, когда горелка не горит, а запальник тухнет, его снова поджигают только через 2-3 мин.

Запустив водонагреватель, закрывают дверцу и проверяют наличие разрежения в дымоходе. Для этого туда вводят зажженную спичку. Если в дымоходе нет разрежения, пользоваться устройством нельзя.

Терморегулятор прекращает подачу газа, когда вода нагревается до определенной температуры. Работа возобновляется при снижении температуры на 5-10 °С. Установить необходимую температуру можно посредством вращения правой нижней гайки блока автоматики. Так, при повышении гайку поворачивают вверх, а при понижении - вниз.

Для того чтобы выключить водонагреватель, следует закрыть кран запальника и кран основной горелки. После этого завинтить кран на газопроводе перед прибором.

Самым качественным прибором в настоящее время считается АОЖВ-9.Прибор представляет собой напольный металлический шкаф с откидными крышками. Его передняя крышка открывает доступ для управления. Сверху «шкаф» накрывается теплоизолирующей крышкой с экраном. На задней стенке водяной рубашки теплообменника имеется дымовой короб. На нем находится шибер, предназначенный для изменения направления движения газов.

Прибор имеет ряд преимуществ перед остальными теплогенераторами.Он отличается высокой теплоотдачей, не допускает возникновения холодных и горячих участков в квартире, равномерно распределяет тепло по всему помещению.

Наконец, аппарат легко очищается от нагара и сажи. Для этого достаточно снять крышку камеры сгорания и с помощью скребка удалить грязь.Смешанные отопительно-варочные теплогенераторыВ небольшом частном доме или на даче можно установить котел для водяного отопления и плиту для приготовления пищи.

Плита и обогревательное устройство работают отдельно друг от друга, т. к. оснащены самостоятельными топливниками и дымоходами.Выгоднее и удобнее использовать приборы со смешанной конструкцией.

Они представлены в виде водяных коробок и змеевиков, которые встраиваются в дымоход печи или плиты.

Теплогенератор работает на твердом топливе, и пригоден он не только для обогрева помещений площадью 50 мг, но и для приготовления еды.Генератор выполнен в виде прямоугольной тумбы с эмалированными боковыми поверхностями.

Состоит такой механизм из сборной топки, задней и боковых стенок, сварного трубчатого теплообменника, водогрейного бочка, духовки и настила. Последний разделен на две плиты, выполненные из чугуна. Внизу находятся специальные ящики для хранения топлива.

Движение газов двухтопочной системы можно регулировать в зависимости от времени года.

Зимой газы пускаются в дымообороты, не попадая в духовку, а летом после духовки направляются в дымовую трубу, минуя дымообороты.Отопительную и варочную части можно использовать как вместе, так и раздельно, что очень удобно в любых условиях.

usamodelkina.ru