Справочник химика 21. Сложные и простые белки


§ 10. Классификация белков

§ 10. КЛАССИФИКАЦИЯ  БЕЛКОВ

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

 

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 18,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Рис. 18. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

 

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины, и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

 

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

 

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин,  принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем, представляющий собой плоскую молекулу, в центре которой расположен ион Fe2+ (рис. 19). При  взаимодействии гемоглобина с кислородом образуется оксигемоглобин.  В альвеолах легких  гемоглобин  насыщается кислородом.  В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением  кислорода,  который  используется клетками:

Гемоглобин может  образовывать  соединение  с оксидом углерода (II), которое называется карбоксигемоглобином:

.

Карбоксигемоглобин не способен  присоединять  кислород. Вот почему происходит отравление угарным газом. 

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 19).

Рис. 19. Гем

 

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20). 

 

Рис. 20. Фосфопротеин 

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки  фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н2  протеин + Н3РО4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

 

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 21). 

 

Рис. 21. Липопротеины в клеточной мембране 

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие  с ними ковалентную связь.

 

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны. Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 22).

 

 

Рис. 22. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

 

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

 

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин. Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции ( рис. 23).

 

 Рис. 23. Клеточная мембрана.

 

Питательные и запасные белки

Питательным белком является казеин, основная функция которого  заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

 

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

 

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки,  способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые  другие вещества. На рис. 24 схематически показана работа переносчика глюкозы.

 

Рис. 24. Транспорт глюкозы через клеточную мембрану

 

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

 

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин:

фибриноген  фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

 

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных  рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом  которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 25).

 

 Рис.25. Передача внешних сигналов в клетку

 

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны. Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

 

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

ebooks.grsu.by

Простые и сложные белки - Справочник химика 21

    Строение белка. Различают простые и сложные белки. В настоящее время достигнут значительный прогресс в области изучения строения белка. Простой белок рассматривают как продукт поликонденсации аминокислот, т. е. как специфический природный полимер. Сложные белки состоят из простого белка и небелковых компонентов — углеводов, нуклеиновых кислот, липидов или других соединений. [c.175]     Различают простые и сложные белки. Простой белок рассматривают как продукт поликонденсации аминокислот, т. е. как специфический природный полимер. Сложные белки состоят из простого белка и небелковых компонентов — углеводов, нуклеиновых кислот, липидов и других соединений. [c.199]

    Простые и сложные белки [c.47]

    В чем различие между простыми и сложными белками  [c.428]

    Учитывая необходимость для студента-медика основательного знакомства с отдельными группами белков, которые могут служить предметом изучения в его будущей профессиональной деятельности (например, белки крови), приводим старую классификацию белков с краткой характеристикой новых данных о структуре, составе и свойствах отдельных представителей. Согласно этой классификации, обширный класс белковых веществ в зависимости от химического состава делят на простые и сложные белки .  [c.72]

    ФЕРМЕНТЫ — ПРОСТЫЕ И СЛОЖНЫЕ БЕЛКИ [c.121]

    Какова роль печени в обмене углеводов, жиров, простых и сложных белков, в обмене минеральных веществ и воды  [c.256]

    Какие простые и сложные белки содержатся в мозговой ткани  [c.256]

    Глютелины — белки, нерастворимые в воде, солевых растворах и этиловом спирте, но растворяющиеся в слабых растворах щелочей (0,2—2,07о). Содержание этих белков в семенах различных растений достигает 1—3% веса семян. Глютелины изучены очень слабо, и некоторые исследователи считают, что эта фракция — смесь различных простых и сложных белков. [c.221]

    Перейдем к ознакомлению со свойствами важнейших представителей отдельных наиболее изученных групп простых и сложных белков. [c.50]

    Важнейшими конечными продуктами обмена простых и сложных белков, образующимися в тканях и органах, являются мочевина, мочевая кислота, креатин, креатинин, аммонийные соли, б и л и р у б и н и ряд других соединений. Эти конечные продукты азотистого обмена поступают в кровь из тканей и с током крови доставляются к почкам, откуда выводятся с мочой наружу. [c.442]

    Глютелины. Это белки, нерастворимые в воде и солевых растворах, но растворимые в слабых растворах щелочей. Изучены очень слабо, считают, что эта фракция является смесью различных простых и сложных белков. [c.36]

    В настоящей книге подробно не описываются отдельные типы белковых веществ, основное внимание здесь уделено ферментным белкам. О двух главных группах — растворимых (очень часто простых) и сложных белках — упоминается очень коротко. По своим свойствам и функциям растворимые белки очень разнообразны, иногда это просто питательные вещества для растущих тканей. Значительная часть этих белков наделена специфической биологической активностью — ферменты, антитела, гормоны и др. Важнейшие группы белков, относящиеся к растворимым,— это белки сыворотки крови, белки молока, яиц, растительные протеины, а также протамины и гистоны. [c.37]

    Азот — один из основных элементов в составе живого вещества. Азот входит во все простые и сложные белки, которые являются главной составной частью протоплазмы растительных клеток. Азот также находится в составе нуклеиновых кислот, которым принадлежит важная роль в обмене веществ. Азот содержится в хлорофилле, фосфатидах, алкалоидах и многих других веществах растительных клеток. Содержание азота в растениях колеблется от 0,1% (стволы хвойных пород) до 3,5% (водоросли), а среднее содержание в зеленых частях растений — 1—2%. [c.48]

    Как известно из курса органической химии, различают простые и сложные белки. [c.227]

    ИЛИ ИЗМЕНЕНИИ ПРОСТЫХ И СЛОЖНЫХ БЕЛКОВ [c.286]

    Несмотря на существенные различия в химическом строении разных белков, им присущ ряд одинаковых или близких свойств, которые используются для целей анализа. Большая часть простых и сложных белков совсем или почти нерастворима в чистой воде присутствие небольших количеств солей или других веществ в растворе способствует их растворению в довольно значительных количествах. С другой стороны, высокие концентрации некоторых солей вызывают высаливание белков из растворов. [c.355]

    Основное содержание книги составляет химия наиболее важных природных биополимеров — простых и сложных белков, из которых формируются структурные элементы клетки. Сведения, касающиеся биологических функций этих соединений и морфологии клетки, даны в минимальном объеме. [c.6]

    Чем обусловлены изменения структурно-функционального состояния простых и сложных белков под влиянием УФ-излучения  [c.200]

    В различного типа мембранах обнаружено много простых и сложных белков, различающихся по структуре, химическим и физико-химическим свойствам. Установлена также значительная вариабельность в составе липидов мембран. Ферментативные свойства отдельных типов мембран несколько различны, отдельные ферменты используют как маркеры в процессах выделения и очистки мембран. [c.22]

    Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в крови 15—25 ммоль/л. Небелковый азот крови включает азот мочевины (50% от общего количества небелкового азота), аминокислот (25%), эрготионеина (8%), мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5%) и других небелковых веществ, содержащих азот (полипептиды, нуклеотиды, нуклеозиды, глутатион, билирубин, холин, гистамин и др.). Таким образом, в состав небелкового азота входит главным образом азот конечных продуктов обмена простых и сложных белков. [c.580]

    Важнейшими конечными продуктами обмена простых и сложных белков, образуюш,имися в тканях и органах, являются мочевина, мочевая кислота, креатин, креатинин, аммонийные соли, билирубин, эрготионеин и ряд других соединений. [c.479]

    Деятельная протоплазма растений — сложнейшее соединение многочисленных простых и сложных белков, в состав которых входят и ферменты с разнообразными небелковыми веществами, водой и солями. Белки протоплазмы обладают особо высокой чувствительностью ко всем внешним воздействиям и способностью вступать в реакции с самыми разнообразными веществамй, но сохранять при этом свои основные качественные свойства, присущие природе данного организма. Лишь при особых условиях можно изменить эту прочную качественную основу живых белков. [c.15]

    Строение ферментов. По строению ферменты бывают простыми и сложными белками. Для сложных белков-ферментов используют следующие обозначения апофермент — полипептидная часть молекулы фермента холофермент — прочный природный комплекс апо-фермента и небелковой части кофактор — небелковая часть сложного белка-фермента простетическая группа — прочно связанный с апоферментбм кофактор (металлы, гем и др.) кофермент — легко отделяемый от апофермента, например диализом, кофактор (витамины, нуклеотиды и др.) Алофермент всегда синтезируется в организме, кофакторы (витамины, металлы и др.) должны поступать с пищей. [c.63]

    Простые и сложные белки. В зависимости от химического состава белки делятся на простые и сложные. Простые белки состоят только из аминокислот, среди которых есть растворимые в воде (гистоны, альбумины, фибриноген) и не растворимые (глобулины, миозин, коллаген, осеин, кератин). Сложные белки состоят из белковой и небелковой частей. Небелковая часть может быть представлена углеводами, нуклеиновыми кислотами, липидами, фосфорной кислотой, окрашенными (хромо-) веществами. В зависимости от природы небелковой части сложные белки делятся на гликопротеиды, нуклеопротеиды, липопротеиды, фосфопротеиды, хромопротеиды. Все они выполняют разнообразные функции в организме. [c.229]

    В заключение следует отметить, что ввиду уникальных свойств белков, особенно в нервной ткани, их трудно классифицировать по единому принципу. Белки нервной системы характеризуются а) по химическому составу (простые и сложные белки) б) по физико-химическим свойствам (растворимые и нерастворимые белки, кислые и основные и т. д.) в) по локализации в различных отделах ЦНС и ПНС и в субкле-ючных структурах нейронов г) по метаболической активности д) по их функциональной роли. [c.132]

    В настоящее время многочисленные исследования по изучению интенсивности метаболизма белков нервной ткани при разнообразных функциональных состояниях организма человека и животных проводятся в различных направлениях 1) исследуется интенсивность обмена белко в нервной системе в онто- и филогенезе 2) изучается особенность метаболизма простых и сложных белков головного мозга, ЦНС и ПНС при различных i функциональных состояниях организма, вызываемых физическими и особенно разнообразными химическими воздействиями. Помимо экзогенных факторов, влияющих на функциональное состояние организма, широко используются эндогенные факторы— гормоны, нейромед иаторы и др. [c.179]

    Все разнообразие функционального состояния нервной системы кодируется в виде нервной импульсации. Физиологи обстоятельно изучили такие состояния нервной системы, как торможение и возбуждение. Одной из актуальных задач функциональной нейрохимии является изучение биохимических процессов, происходящих при торможении нлн возбуждении нервной системы. Так, например, установлена корреляция в изменениях интенсивности обмена белков нервной ткани п степени торможения или стимуляции функционального состояния нервной системы. Нервная ткань является исключительно сложной морфологической структурой, а в биохимическом отношении чрезвычайно гетерогенной системой, состоящей из разнообразных простых и сложных белков и небелковых компонентов. Этим в значительной мере и определяется исключительная трудность обнаружения количественных и качественных изменений белков и белковых комплексов в разных отделах ЦНС и ПНС как в норме, так и при различных функциональных состояниях нервной системы. Только метод радиоактивной индикации позволил значительно расширить возможности биохимических исследований в опытах ш vivo и 1п vitro. Исследовалась интенсивность обмена суммарных белков головного мозга при различных воздействиях, начиная от различных форм гипоксии, гипотермии, глубокого наркоза и кончая естественным сном. В частности, в нашей лаборатории были i проведены многочисленные исследования, касающиеся измене- [c.179]

    Столь же несовершенна и классификация белков. В зависимости от положенного в основу классификации признака среди белков выделяют те или иные узкие или широкие группы. Так, характеризуя белки по степени сложности, среди них вьщеляют две большие группы простые и сложные белки. К простым белкам, или протеинам, относят белки, дающие при гидролизе только аминокислоты. Сложными белками называют вещества, состоящие из протеина (простого белка) и добавочной группы небелковой природы. Поэтому ранее было принято называть сложные белки протеидами, т. е. подобными протеинам. Однако сейчас от этого термина отказались, и в зависимости от химической природы добавочной группы эти белки называют хромопротеинами, липопротеинами, гликопротеинами, нуклеопротеинами, металлопротеинами и т. п. Простые белки часто обозначают как однокомпонентные, а сложные— как двухкомпонентные. [c.80]

chem21.info

Белки | Наука | FANDOM powered by Wikia

Файл:Myoglobin.png

Белки́ — сложные высокомолекулярные природные органические вещества, построенные из аминокислот, соединённых пептидными связями. Последовательность аминокислот в белке определена геном и зашифрована в генетическом коде. Хотя это генетическое кодирование определяют 22 "стандартные" аминокислоты, расположение их в белке (протеине) дает возможность создания бесчисленного количества разных протеинов. Белки могут работать совместно, для того чтобы достигнуть определенной функции, и они часто связываются для того чтобы сформировать стабилизированный комплекс.

    История изучения Править

    Названние «протеин» (синоним «белку») происходит от греч. πρώτα; («прота»), то есть — «главным образом важности». Изначально белки были описаны и приобрели название только в 1838 году. Однако их центральная роль в организмах не была признана до 1926 года, когда американский химик Джеймс Самнер (впоследствии — лауреат Нобелевской премии) показал, что уреаза энзима была белком.

    Структура белка Править

    Файл:Peptide-bond-planes-n-rotation.png

    Молекулы белков представляют собой линейные полимеры, состоящие из 22 основных L-α-аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот (правда модификации происходят уже после синтеза белка на рибосоме). Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения.

    При образовании белка в результате взаимодействия α-аминогруппы (-Nh3) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты образуются пептидные связи. Концы белка называют С- и N- концом (в зависимости от того, какая из групп концевой аминокислоты свободна: -COOH или -Nh3, соответственно). При синтезе белка на рибосоме, новые аминокислоты присоединяются к C-концу, поэтому название пептида или белка даётся путём перечисления аминокислотных остатков начиная с N-конца.

    Белки длиной от 2 до 100 аминокислотных остатков часто называют пептидами, при большей степени полимеризации - протеинами, хотя это деление весьма условно.

    Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде поcледовательности нуклеотидов, причем одной аминокислоте соответсвует одна или несколько последовательностей из трех нуклеотидов - так называемых триплетов или кодонов. То, какая аминокислота соответствует данному кодону в мРНК определяется генетическим кодом, который может несколько отличаться у разных организмов.

    Гомологичные белки (выполняющие одну функцию и предположительно имеющие общее эволюционного происхождение, например, гемоглобины) разных организмов имеют во многих местах цепи различные аминокислотные остатки, называемые вариабельными, в противоположность инвариантным, общим остаткам. По степени гомологии возможна оценки эволюционного расстояния между таксонами.

    Простые и сложные белки Править

    Выделяют простые белки (протеины) и сложные белки (протеиды). Простые белки содержат только аминокислоты, связанные в цепочку. Сложные белки имеют также неаминокислотные группы. Эти дополнительные группы в составе сложных белков называются «простетическими группами». Многие белки эукариот, например, имеют полисахаридные цепи, которые помогают белку принимать нужную конформацию и придают дополнительную стабильность. Дисульфидные мостики также играют роль как элементы необходимые при принятии белком правильной 3-х мерной формы, и являются главным компонентом сложных белков. Но важно заметить, что в основном только эукариоты способны на синтезирование сложных белков (протеидов), так как прокариоты не имеют достаточно компартментализации для создания дополнительных изменений, присутствующих в сложных белках, и даже если могут это делать в периплазматическом пространстве , то это случается либо редко, либо неэффективно.

    Уровни структуры белка Править

    Файл:Proteinviews-1tim.png

    Кроме последовательности (первичной структуры), крайне важна трехмерная структура белка, которая формируется в процессе фолдинга (от англ. folding, т.е. сворачивание). Показано, что несмотря на огромные размеры молекул, природные белки имеют лишь одну конформацию, утратившие структуру белки теряют свои свойства.

    Выделяют четыре уровня структуры белка:

    • α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 4 аминокислотных остатка, спираль стабилизорована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль может быть построена исключительно из одного типа стереоизомеров аминокислот (L или D), хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина, близкорасположенные аспарагин, серин, треонин и лейцин могут стерически мешать образованию спирали, пролин вызывает изгиб цепи и также нарушает α-спирали.
    • π-спирали;
    • $ 3_{10} $-спирали;
    • β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между разными цепями, а не внутри одной, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в разные стороны (антипараллельная ориентация). Для образования листов важны небольшие размеры R-групп аминокислот, преобладают обычно глицин и аланин.
    • неупорядоченные фрагменты.
    Третичная структура — пространственное строение полипептидной цепи - взаимное расположение элементов вторичной структуры, стабилизированное взаимодействием между боковыми цепями аминокислотных остатков. В стабилизации третичной структуры принимают участие: Четверичная структура — субъединичная структура белка. Взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.

    Также выделяют:

    • Трёхмерную структуру белка — набор пространственных координат, составляющих белок атомов.
    • Cубъединичную (доменную) структуру белка — последовательность участков белка, имеющих известную функцию или определенную трёхмерную структуру.
    • Гидрофобное ядро, обеспечивающее сворачивание белка.

    Денатурация Править

    Биосинтез белка Править

    Функции белков в организме Править

    Так как и другие биологические макромолекулы (полисахариды, липиды) и нуклеиновые кислоты, белки - необходимые компоненты всех живых организмов, и участвуют в каждом внутреннем процессе клетки. Они являются обязательными компонентами в питании человека и животных, так как не все необходимые аминокислоты могут синтезироваться в организме, и должны поступать из еды. Через процесс пищеварения животные разлагают поглощенные белки при помощи ферментов (также белковой природы) на свободные аминокислоты, которые потом можно использовать для синтезирования нужных протеинов.

    Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур — органелл или секретируются во внеклеточное пространство.

    Структурная функция Структурные белки, такие как коллаген и эластин обеспечивают фиброзную основу соединительных тканей у животных. Белки входят в состав клеточных мембран. Также белки формируют цитоскелет, обеспечивающий поддержание формы клетки и участвующий во внутриклеточном транспорте. Каталитическая функция Ферменты (энзимы), которые служат катализаторами химических реакций в организме. Известно несколько тысяч ферментов, среди них, наример, пепсин, расщепляет белки в процессе пищеварения. Защитная функция Белки, составляющие имунную систему, защищают организм от патогенов, путем генерации имунного ответа. Примеры — антитела (иммуноглобулины), нейтрализующие бектрии, вирусы или чужеродные белки, фибриногены и тромбины, участвующие в свёртывании крови. Регуляторная функция Полипептидные (белковые) гормоны и цитокины. Примеры — инсулин, который регулирует концентрацию глюкозы в крови и фактор некроза опухолей, который передает сигналы воспаления. Транспортная функция Транспортные белки, такие как гемоглобин, который переносит кислород из легких к остальным тканям и углекислый газ от тканей к легким. Энергетическая функция Как запасной источник энергии. При полном расщеплении 1 г белка выделяется 17,6кДж энергии. Запасная (резервная) функция белков К таким белкам относятся так называемые резервные белки, являющиеся источниками питания для развития плода; белки яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков несомненно используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма. Рецепторная функция В мембрану клетки встроены белки, способные изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача информации в клетку. Моторная и сократительные функции Целый класс моторных белков, участвует в сокращении мышц (миозин), активном и направленном внутриклеточном транспорте (кинезин, динеин).

    af:Proteïen ar:بروتين bg:Белтък bs:Bjelančevine ca:Proteïna cs:Bílkovina da:Protein de:Protein el:Πρωτεΐνη en:Protein eo:Proteino es:Proteína et:Valk eu:Proteina fa:پروتئین fi:Proteiini fr:Protéine gl:Proteína he:חלבון hr:Bjelančevine hu:Fehérje id:Protein io:Proteino is:Prótín it:Proteina ja:蛋白質 ko:단백질 lb:Protein lt:Baltymas lv:Olbaltumviela mk:Протеин mn:Уураг nl:Proteïne nn:Protein no:Protein pam:Protina pl:Białko pt:Proteína ro:Proteină sh:Protein simple:Protein sk:Bielkovina sl:Beljakovina sr:Протеин su:Protéin sv:Protein ta:புரதம் th:โปรตีน tr:Protein ug:ئاقسىل uk:Білок vi:Protein yi:פראטין zh:蛋白质 zh-min-nan:Nn̄g-pe̍h-chit

    ru.science.wikia.com

    Раздел IX I Белки сложные и простые

        Белки разделяют на две главные группы протеины, или простые белки, не содержащие небелковых групп, и протеиды, или сложные белки, содержащие, помимо собственно белка, еще и небелковую (простетическую) группу. [c.8]

        Биологические катализаторы, являющиеся продуктами деятельности живых организмов и ускоряющие биохимические процессы, называются ферментами. Принято разделять ферменты на простые и сложные, или однокомпонентные и двухкомпонентные. Простые ферменты состоят только из белка, сложные — из белка и небелковой части, которую называют кофер-. ментом. [c.111]

        Классификация белков. Белки разделяются на протеины (простые белки), в состав которых входят только остатки аминокислот, и сложные белки, или протеиды. Последние дают при гидролизе аминокислоты и какие-либо другие вещества, например, ( фор-ную кислоту, глюкозу, гетероциклические соединения и т. д. [c.335]

        В настоящее время все белки разделяют на две большие группы протеины, или простые белки, построенные только из остатков аминокислот, и протеиды, или сложные белки, состоящие из простого белка и прочно связанного с ним какого-либо другого соединения небелковой природы. [c.220]

        Белки разделяются па. протеины (простые белки), в состав которых входят только остатки аминокислот и протеиды (сложные белки). Последние дают прн гидролизе аминокислоты и какие-либо [c.506]

        Согласно принятой классификации протеины разделяются прежде-всего на простые и сложные. К простым белкам относятся те, которые при гидролизе дают только аминокислоты или их производные.. Сложные белки при разложении помимо этого дают какое-либо небелковое вещество. [c.9]

        Практически все белковые макромолекулы даже в водных растворах вращаются медленно. Поэтому и в связи с тем, что теория формы спектра ЭПР в области медленных вращений радикалов получила развитие лишь в последние годы, для исследования белков в подавляющем большинстве работ использовались нитроксильные радикалы-метки, частично вращающиеся относительно самой молекулы белка. Относительное вращение радикала, с одной стороны, приводит к быстрому результирующему вращению радикалов, что позволяет характеризовать исследуемую систему с помощью времен корреляции этого быстрого результирующего вращения. С другой стороны, вращение радикала относительно белка приводит к усложнению модели вращения и к возникновению дополнительных переменных, определяющих расположение радикала относительно белка и интенсивность его относительного вращения. Как отмечалось в разделе II.7, форма спектра ЭПР подобной сложной системы в ряде простейших случаев в принципе поддается корректному анализу. Однако практически независимо [c.183]

        Весь обширный класс белковых веществ принято прежде всего разделять на две большие группы простые белки, или протеины, и сложные белки, или протеиды. [c.49]

        Дальнейшие сведения о химической структуре белково молекулы были, получены именно путем изучения продуктов более или менее глубокого расщепления белков. На основании изучения этих продуктов оказалось возможным сделать ряд предположений как о составе, так и о строении самих белков. В частности, выяснилось, что белки можно разделить на простые и сложные в зависимости от их состава (стр. 48). [c.24]

        Все белки разделяются на два больших класса простые белки, или протеины, и сложные белки, или протеиды. [c.710]

        Из-за флуктуации зарядов белок может существовать при одном и том же значении pH в различных ионных формах. Поэто-му, измеряя подвижность, мы находим значение, усредненное за промежуток времени, значительно превосходящий время жизни каждой из ионных форм белка. Вблизи изоэлектрической точки зависимость подвижности и от pH часто является линейной, т. е. описывается прямой. Наклоны таких прямых для разных белков, как правило, различны. При том значении pH, где кривые, построенные для двух белков, пересекаются, разделить эти белки с помощью электрофореза невозможно. В изоэлектрической точке = 0. Величина pH, при которой и = 0, зависит от состава буфера, в котором проводится эксперимент. Обычно буфер, содержащий простые однозарядные ионы, меньше сдвигает изе электрическую точку, чем буфер с ионами более сложного строения. [c.218]

        О содержании спиральных форм можно судить также по величинам Кс и [аЬ, но эти параметры больше, чем Ьо, зависят от таких внешних факторов, как температура и характер растворителя. Кроме того, параметр К,, можно использовать с этой целью только при низком содержании спиральных форм (менее 40%), поскольку при большом их содержании характер дисперсии становится сложным. В этих случаях простое уравнение Друде (1.2) неприменимо, и, следовательно, неясно, что подразумевать под Хс. В начале этого раздела было уже указано, что при переходе от денатурированного белка к нативному наблюдается уменьшение отрицательного вращения, которое можно объяснить тем, что отрицательное вращение, обусловленное Ь-амино-кислотами, накладывается на положительное вращение, обусловленное образованием правой а-спирали. [c.291]

        По первому принципу все белки разделяются на растворимые — глобулярные и нерастворимые — фибриллярные белки. К глобулярным относятся внутриклеточные белки, к фибриллярным — белки внешних покровов (шерсти, волос и др.). Далее белки разделяются на протеины (простые белки), в состав которых входят только остатки аминокислот, и сложные белки, или-яротеыды. -Шследние дают при гидролизе аминокислоты и какие-либо другие вацества, например фосфорную кислоту, глюкозу, гетероциклические соединения и т. д. [c.296]

        Раздел IX БЕЛКИ ПРОСТЫЕ И СЛОЖНЫЕ [c.144]

        Простые глико- и липопротеиды плазмы крови были разделены больше чем на двадцать пять фракций. Эти белки участвуют в образовании тканей, построении и переносе ферментов, гормонов, антител и продуктов обмена веществ. Основную часть белков крови составляют альбумины, довольно много также глобулинов и фибриногена. Альбумины образуют комплексы с веществами самых различных типов — с кислотами, сложными эфирами, сульфамидными препаратами — и разносят эти вещества по всем клеткам тела. а-Глобулины и Р-глобулины дают комплексы с нерастворимыми в воде веществами — холестерином, жирными кислотами, фосфолипидами и каротиноидами. у-Глобулины содержат антитела, которые защищают организм от инфекций. Фибриноген принимает участие в процессе свертывания крови. [c.360]

        Для всех живых организмов многие закономерности химического состава, строения и превращения веществ являются общими. Тем не менее у растений, животных и человека наблюдаются различия в химических процессах, обеспечивающих их жизнедеятельность. Так, растения синтезируют сложные органические вещества из простых неорганических веществ, таких как вода, углекислый газ, минеральные вещества, и аккумулируют солнечную энергию в процессе фотосинтеза. Животные и человек нуждаются в поступлении сложных органических соединений — углеводов, жиров, белков, которые необходимы для построения и энергообеспечения организма. Поэтому в зависимости от объекта исследования выделяют следующие разделы биохимии биохимия животных и человека, биохимия растений, биохимия микроорганизмов и вирусов. [c.10]

        Общие принципы организации типичных спиральных и изометрических вирусов были изложены в двух предыдущих разделах. Некоторые физические и химические свойства простых РНК- и ДНК-содержащих вирусов суммированы в табл. 7—9. Те же самые принципы лежат и в основе организации более сложно устроенных вирусов, отличающихся лишь большим числом белковых оболочек, построенных из капсомеров (термин нуклеокапсид теряет свое значение в этом случае), или же наличием наружной оболочки или отростка и других органелл. Структурное и в особенности важное биологическое значение этой возрастающей сложности рассматривается в следующих разделах. В первую очередь мы рассмотрим вирусы, содержащие белки более чем одного типа, затем перейдем к вирусам, имеющим более одной молекулы нуклеиновой кислоты затем — к вирусам, состоящим из частиц более чем одного типа, к частицам с наружными оболочками и различными органеллами затем к вирусам, не имеющим совсем никакой частицы и, наконец, к образованиям, совсем уже не являющимся вирусами. [c.153]

        Все нуклеопротеиды можно разделить по меньшей мере на два типа. К первому типу относятся нуклеопротеиды, в которых нуклеиновая кислота связана солевой связью с простыми белками основного характера и низкого молекулярного веса. Такими белками могут быть протамины (сальмин, клупеин, сту-рин), встречающиеся в сперме рыб. К этому же типу относятся нуклеопротеиды, в которых нуклеиновая кислота связана с основными белками более высокого молекулярного веса — гистолами. Примером могут служить нуклеопротеиды, встречающиеся в тканях зобной и поджелудочной желез. Ко второму типу мы относим более сложные структуры — вирусы растений (например, вирус табачной мозаики) и бактериофаги. Содержание нуклеиновых кислот в вирусах колеблется от 5 до 50%. Природа связи между белками и нуклеиновыми кислотами в вирусных нуклеопротеидах изучена слабее, чем в нуклеопро-теидах первого типа. Известно, что в вирусном нуклеопротеиде связи между белком и нуклеиновыми кислотами более лабильны и что для белков вирусов характерно высокое содержание основных аминокислот. Даже сравнительно простые вирусы имеют весьма сложное строение. Еще более сложное строение у таких вирз сов, как вирусы гриппа и пситтакоза. Последние могут даже быть отнесены к микроорганизмам. Подробное строение вирусов этой группы здесь не рассматривается. [c.246]

        БЕЛКИ. Сложные высокомолекулярные органические соединения,-построенные из аминокислот. Молекулярный вес их колеблется от нескольких десятков тысяч до нескольких миллионов. В их состав входят углерод — 50—55, кислород — 19—24, водород — 6—7, азот —15—19 и сера — 0,2—2,8%. Из всех веществ, входящих в состав живых организмов, Б. являются наиболее сложными по своему строению и наиболее важными в биологическом отношении. Составляют основу всех живых структур. Организм человека и животных в среднем содержит на сухое вещество 45, травянистые растения — 9—16, семена злаков — 10—20, оемена бобовых — 25—35, древесные породы — 1—2, бактерии 50—93% Б. Обладают свойством денатурации (свертывания) при действии кислот, при нагревании. Разделяются на простые Б. (протеины), состоящие только из аминокислот, и сложные Б. (протеиды), в состав которых входят и другие соединения. См. также Протеины. [c.37]

        Простые и сложные ферменты. Разделяют ферменты на простые и сложные. Простые ферменты состоят только из белка. Это многие ферменты пищеварительного тракта — амилаза, пепсин, трипсин. Сложные ферменты состоят из белковой части, которая называется апоферментом, и небелковой, которая называется кофактором. Молекулу сложного фермента часто называют холоферментом. Кофакторы, которые слабо связаны с белковой частью фермента, называются коферментами (коэнзима-ми). Кофермент может легко переходить от одного фермента к другому. Кофакторы, прочно связанные с белковой частью фермента, называются простетической группой. Кофакторами могут быть различные органические вещества и их комплексы, а также минеральные вещества. Многие из них термостабильны, но могут окисляться атмосферным кислородом. В организме человека ряд кофакторов не синтезируется, а поступает с продуктами питания. Их строение и участие в биологических процессах рассмотрено далее. [c.91]

        С помощью Л. X, удается выделять и разделять соед., склонные к координации с ионами металлов, в присут. больших кол-в минер, солей и некоординирующихся в-в. Напр, с использованием иминодиацетатной смолы с ионами Си из морской воды выделяют своб. аминокислоты На катионитах с ионами Ре разделяют фенолы, с ионами Лg -сахара. На карбоксильных катионитах с N1 разделяют амины, азотсодержащие гетероциклы, алкалоиды. На силикагеле с нанесенным слоем силиката Си в водно-орг. среде в присут. ННз проводят быстрый анализ смесей аминокислот и пептидов, причем элюируемые из колонки комплексы легко детектируются спектрофотометрически. На высокопроницаемых декстрановых сорбентах с иминодиацетатными группами, удерживающими ионы N1 или Си- , селективно выделяются из сложных смесей индивидуальные белки и ферменты, содержащие иа пов-сти своих глобул остатки гистидина, лизина или цистеина. Силикагели с фиксированными на пов-сти инертными т/)ис-этилендиа.миновыми комплексами Со используют для т. наз. внешнесферной Л. х. смесей нуклеотид-фосфатов. Методом газовой Л. х. с помощью фаз, содержащих соли Ag , разделяют олефины, ароматич. соед., простые эфиры. Тонкослойная Л. х. на носителях, пропитанных солями Ag , применяется для анализа стероидов и липидов. [c.590]

        Анализ известных белковых структур дает ценные сведения для понимания.механизма свертывания и стабильности белков. В структурах этих белков обнаруживаются шесть уровеней организации. На первом уровне находится аминокислотная последовательность, которая целиком определяет окончательную структуру белка. В структурах белков можно выделить несколько типов упорядоченности формы основной цепи. Это так называемые вторичные структуры, которые составляют второй уровень. Две из таких регулярных структур (а-спираль и 3-складчатый лист) были предсказаны на основе ковалентного строения основной цепи как наиболее простые. Следующие два уровня, сверхвторичные структуры и структурные домены, гораздо более сложны и пока не предсказуемы. На этих уровнях также проявляются вполне определенные закономерности, например такие, как корреляция между близкими по цепи остатками. Эти закономерности не выражаются в каких-либо определенных структурах, а носят весьма общий характер. На двух самых высоких уровнях организации, занимаемых глобулярными белками и агрегатами, сейчас уже делаются попытки некоторых структурных предсказаний. Возможность таких предсказаний основана на том, что нижние структуры, домены для глобулярных белков и глобулярные белки для агрегатов предполагаются внутренне стабильными (в некоторых случаях это подтверждено экспериментом). Характер агрегатов можно предсказать с помощью анализа контактной поверхности глобулярных белков. Это же относится и к предсказаниям строения глобулярных белков по их доменам. Кроме того, свойства поверхности, как это следует из изучения поверхностей раздела белок — белок, имеют важное значение для белкового узнавания. В главе обсуждены некоторые законо- [c.127]

        Все нуклеотиды имеют асимметрические атомы и поэтому оптически активны. Однако в настоящее время интерес к ДОВ нуклеиновых кислот вызван попытками проникнуть в их вторичную структуру [107—114), аналогично тому как изучались полипептиды и белки (см. раздел Г). Известно, что в видимой области спектра ДНК и РНК имеют простую дисперсию оптического вращения друдевского типа [110, 111, 114). Фреско [ПО], однако, сообщил о сложной дисперсии ДНК, но он проводил измерения в ультрафиолетовой области спектра ниже 360 мц. По-видимому, целесообразно с помощью доступных в настоящее время приборов высокого класса вновь исследовать ДОВ этих природных полимеров. В табл. 17 приведены недавно опубликованные (требующие в будущем уточнения) параметры ДОВ нуклеиновых кислот и некоторых синтетических полипептидов. В отличие от ДОВ синтетических полипептидов ДОВ полинуклеотидов обрабатывали только с помощью уравнения Друде и никакими другими уравнениями не пользовались в этой области нет также ни одной удовлетворительно развитой теории. Оптическое вращение этих [c.118]

        После проведения гидролиза белка полученную смесь аминокислот необходимо разделить и количественно проанализировать. Метод газо-жидкостной хроматографии привлекает своей быстротой и чувствительностью, в особенности метод хромато-масс-спек-трометрии [10]. Разумеется, необходимо перевести свободные аминокислоты в более летучие для ГЖХ производные и в этом состоит трудность. Большинство известных методов включает две реакции образование сложного эфира по карбоксильной группе и ацилирование аминогруппы. Крайне важно, чтобы обе реакции протекали практически нацело, а образовавшиеся производные можно быЛ о бы разделить. Несколько сотен опубликованных за последние 25 лет работ свидетельствуют о трудностях, которые при этом возникают. Карбоксильную группу обычно переводят в сложноэфирную, используя простые радикалы от метила до пентила, в то время как для защиты амино- или иминогруппы популярны iV-трифтораце-тильная и JV-гептафтормасляная группы, так как они позволяют проводить ГЖХ-анализ с высокой чувствительностью при использовании детектора электронного захвата. Трудности связаны с ацилированием гуанидиновой группировки аргинина и термолабильностью производных цистеина из-за реакций -элиминации. Обсуждаемая техника и соответствующая литература коротко изложены в обзоре [11]. [c.260]

        Хорошим примером дискретной системы, которую можно выделить и которая содержит тесно ассоциированные друг с другом белки и нуклеиновые кислоты, является вирус. Вирус простейшего типа состоит из РНК или ДНК, одно- либо двухцепочечной, окруженной белковой оболочкой, состоящей из идентичных или различных субъединиц, организованных в симметричную структуру. В более сложных типах вирусов имеется также внешний слой, состоящий из липидов и гликопротеинов. Между нуклеиновой кислотой и белком (белками) оболочки существует тесная взаимосвязь, генетическая информация для биосинтеза этого белка закодирована в нуклеиновой кислоте, и в то же время белок предохраняет нуклеиновую кислоту от действия нуклеаз клетки-хозяина. Еще более тесная физическая связь имеет место между белковыми субъединицами. Такая связь была продемонстрирована в результате разрушения вируса табачной мозаики, за которым следовала спонтанная самосборка белка в отсутствие нуклеиновой кислоты. Пустая оболочка, или капсида, была, однако, менее стабильна, чем содержавшие нуклеиновую кислоту реконструированные вирусные частицы. Этот результат указывает, что взаимодействия белок-ну-клеиновая кислота играют важную, хотя, вероятно, не столь значительную роль, по сравнению с белок-белковыми взаимодействиями. Вирусы, таким образом, как бы образуют смысловой мостик между предыдущим разделом и рассматриваемым ниже взаимодействием гистонов с нуклеиновыми кислотами. [c.567]

        Кислые мукогюлисахариды в соединительной ткани связаны с белка- ми (см. стр. 602), поэтому для их выделения, как правило, проводят предварительное разрушение белков протеолитическими ферментами или расщепление углевод-белковых связей щелочами, после чего полисахариды экстрагируют растворами солей . Белки, также переходящие при этом в раствор, удаляют с помощью денатурирования. Смеси мукополисахаридов можно разделить на компоненты фракционированным осаждением спиртом в виде солей с различными катионами , но лучшие результаты дает фракционированное осаждение цетавлоном или ионообменная хроматография . Особенности химического поведения мукополисахаридов сделали чрезвычайно сложной задачу установления их строения. Даже идентификация моносахаридов после полного кислотного гидролиза (обычно одна из самых простых операций) является в мукополисахаридах трудной проблемой. Наличие в одной молекуле уроновых кислот и аминосахаров приводит к тому, что полисахариды гидролизуются лишь в жестких условиях, при которых освобождающиеся уроновые кислоты подвергаются интенсивному разрушению. Поэтому в последнее время работу по установлению строения этих веществ проводят на модифицированных полисахаридах, в которых сульфатные группы удалены, а все карбоксильные группы уроновых кислот восстановлены в первичноспиртовые. Ряд других классических методов установления строения полисахаридов применим к мукополисахаридам с трудом это относится к перйодат ному окислению, вызывающему разрушение остатков уроновых кислот вследствие сверхокисления, к метилированию, в применении которого успехи достигнуты сравнительно недавно. Основными методами, позволившими выяснить строение мукополисахаридов, послужили методы частичного гидролиза и частичного ферментативного расщепления. [c.541]

        Белки разделяют на две большие группы простые белки — протеины и сложные — протеиды. Простые белки не содержат небелковых групп, они в основном состоят из аминокислот. Сложные белки содержат, кроме собственно белка, еще и небелковую (простетическую) группу. К простым белкам относятся альбумины, глобулины, прола-мины, глютелины, протамины, гистоны и протеиноды. Больше всего альбуминов — в зеленых частях растений. Глобулины являются самой распространенной группой природных тел. В растениях глобулины встречаются в основном как отложения в семенах. Глобулины в отличие от альбуминов нерастворимы в воде. В семенах пшеницы и ржи из проламинов содержится глиадин, в семенах ячменя — гордеин. В семенах злаковых и в зеленых частях растений наряду с другими белками есть глютелины. Глиадин и глютенин составляют белки клейковины. [c.35]

        Сейчас все ферменты по составу разделяются на две группы 1) простые ферменты, представляющие собой кристаллические белки 2) сложные ферменты, имеющие в своем составе активную или простетическую группировку небелковой природы (ко-фермент) и белковый носитель (апофермент). Простетическими группами ферментов могут быть витамины, нуклеотиды и т. д. Часто ферменты прочно связаны с микробной клеткой (например, многие окислительно-восстановительные ферменты) и выделяются наружу лишь после ее разрушения. Такие ферменты Называются эндоферментами. Ферменты, которые легко выделяются из клетки в окружающую среду (например, гидролазы), называются экзоферментами. [c.83]

        Белки разделяются на две большие группы протеины, или простые белки, молекула которых состоит из одних аминокислот, н протеиды, или сложные белки, распадающиеся при гидролизе на аминокислоты и небелковую часть различной природы. Протеины, в свою очередь, делятся (по растворимости) на альбумины, глобулины, гистоны, протамины и склеропротеины. В зависимости от характера небелковой части среди протеидов различают нуклео-протеиды, содержащие, кроме аминокислот, нуклеиновые кислоты промопротеиды, в состав которых входят красящие вещества, гликопротеиды, содержащие различные производные углеводов, фосфопротеиды, характеризующиеся наличием остатка фосфорной кислоты, непосредственно связанной с белком, а не через нуклеиновые кислоты, как это имеет место у нуклеопротеидов, и липо-протеиды, содержащие липиды. [c.59]

        Высокомолекулярные соединения, содержащие функциональные группы (гидроксил, карбоксил, аминогруппу и др.), могут вступать в химические реакции так же, как п низкомолекулярные. Известны II достаточно хорошо изучены различные реакции гидроксильных групп целлюлозы и крахмала на основе этих реакций по.т1учены сложные эфиры (нитроцеллюлоза, ацетилцеллюлоза, нитрокрахмал) н простые эфиры (метил- и этилцеллк )-лоза, метилкрахмал и т. п.). Так называемое дубление казеина и превращение его в галалит заключается во взаимодействии аминогрупп белка казеина с формалином. Химические реакции функциональных групп в природных высокомолекулярных соединениях довольно широко изучены теоретически и практически и поэтому превратились в самостоятельные разделы химии высокомолекулярных соединений, как, иапример, химия целлюлозы химия крахмала , химия белков и т. п. [c.159]

        Белки разделяются на две большие группы протеины, или простые белки, молекулы которых состоят из одних аминокислот, и протеиды, или сложные белки, распадаюшиеся при гидролизе на аминокислоты и небелковую часть различной природы. В зависимости от аминокислотного состава и некоторых других свойств протеины в свою очередь делятся на альбумины, глобулины, гистоны, протамины и склеропротеины. В зависимости от характера небелковой части протеиды разделяются на н у к л е о п р о те и д ы, содержащие кроме белка так называемые нуклеиновые кислоты хромопротеиды, в состав которых входят красящие вещества глюкопротеиды, содержащие различные производные углеводов фосфопротеиды, характеризующиеся наличием фосфорной кислоты, непосредственно связанной с молекулой белка, а не через нуклеиновые кислоты, как у нуклеопротеидов, и липопротепды, содержащие жиры. [c.51]

        Уже к 1820 г. было установлено, что белки гидролизуются, и Бра-конно выделил из гидролизата простейшую а-аминокислоту — а-ами-ноуксусную (за свой сладкий вкус и происхождение из желатина, т. е. из белкового клея костей, она была названа гликоколом, а позднее — глицином). Далее из гидролизатов белков были выделены и другие аминокислоты, и вплоть до середины XX века продолжалось открытие более экзотических аминокислот. В 90-х годах прошлого века Э. Фишер разработал свой метод исследования аминокислотного состава гидролизатов белков. Метод Фишера состоит в том, что смесь аминокислот, полученную в результате гидролиза с помощью концентрированной соляной кислоты, превращают этерификацией посредством этанола и НС1 в сложные эфиры аминокислот, освобождают их от солеобразно связанной НС1 путем добавления щелочи и разделяют эфиры фракционной перегонкой в вакууме. Такой препаративный метод, несмотря на то что он далек от совершенства (потеря от /з ДО /г всей массы аминокислот), был большим шагом вперед. Вскоре было выяснено, что в состав подавляющего большинства исследованных белков входят -а-аминокислоты из числа помещенных в табл. 88, и лишь редкие белки содержат какие-либо аминокислоты сверх этих. В таблице выделены жирным шрифтом незаменимые в пище человека и животных аминокислоты, потребление которых должно составлять в сумме 21—31 г в сутки. Остальные аминокислоты организм способен синтезировать сам, если ему доставляется с пищей источник азота (например, в виде глутаминовой кислоты). Эти аминокислоты требуются в количестве [c.654]

        Дальнейшая судьба кетокислоты зависит от типа той аминокислоты, из которой она образовалась. Вообще говоря, катаболизм каждой аминокислоты требует особого изучения. Так, например, глицин представляет собой простейшую аминокислоту, однако в обмене веществ он может участвовать в образовании муравьиной и уксусной кислот, этаноламина, серина, аспарагиновой кислоты, жирных кислот, рибозы, пуриновых и пиримидиновых оснований и протопорфирина. Таким образом, глицин может играть важную роль в обмене углеводов, жиров, белка, нуклеиновых кислот и гемоглобина, что является прекрасной иллюстрацией взаимоотношений, существующих в организме между разными типами обмена. Другие аминокислоты также претерпевают сложные метаболические превращения, описание которых выходит за пределы данной книги. Обычно аминокислоты разделяют на гликогенные и ке-тогенные, подчеркивая тем самым их способность образовывать глюкозу и гликоген, т. е. участвовать в углеводном обмене, или же вступать в реакции обмена липидов и образовывать кетоновые тела. [c.381]

    chem21.info


.