РАЗНОВИДНОСТИ СИСТЕМ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ. Системы горячего водоснабжения


Система горячего водоснабжение

Категория: Водоснабжение и канализация

Система горячего водоснабжение

Существуют различные способы приготовления горячей воды для бытовых целей: в кухонных очагах, водонагревательных колонках, работающих на твердом топливе, в газовых или электрических нагревателях. Кипяченую воду приготовляют в специальных нагревателях-кипятильниках.

Все эти огневые (на твердом топливе), газовые и электрические нагреватели воды относятся к местным установкам горячего водоснабжения. Они размещаются в зданиях и состоят из генератора тепла и водяного сосуда (резервуара) с нагревательной поверхностью.

В больших жилых и общественно-коммунальных зданиях, а также на промышленных предприятиях, где потребляется много горячей воды, устраивают централизованные системы горячего водоснабжения. Крупные системы обслуживают большие группы зданий, предприятия и даже целые поселки и отдельные районы города. Такие системы являются районными системами горячего водоснабжения.

Централизованная система отдельных зданий состоит из установок для приготовления горячей воды и разветвленных сетей трубопроводов, подводящих воду к водоразборным и смесительным кранам (потребителям) .

В централизованных системах горячего водоснабжения применяют для приготовления горячей воды различные водоводяные и пароводонагреватели. В водогрейных и паровых котлах используют твердое, жидкое и газообразное топливо.

Во многих городах горячая вода часто подается в здания централизованно — от ТЭЦ.

Системы горячего водоснабжения выполняются с нижней и верхней разводкой. При верхней разводке трубы прокладывают по чердаку, а при нижней — под полом или под потолком подвала.

Для монтажа систем горячего водоснабжения применяют стальные оцинкованные трубы. Разводящие трубы покрывают тепловой изоляцией, а стояки и подводящие трубы изоляцией не покрывают.

В зависимости от местных условий для подачи горячей воды устраивают тупиковые или замкнутые (кольцевые) сети. Эти сети обеспечивают подачу воды определенной температуры к водоразборным точкам.

Водоразборные краны или смесители, установленные у санитарных приборов, позволяют получать воду требуемой температуры. Температура потребляемой воды для ванн и душей должна быть 37 °С, для мытья посуды и стирки белья 65—70 °С, для бань — до 60 °С.

Рис. 1. Схема центрального горячего водоснабжения зданий от теплосети

Рис. 2. Схема горячего водоснабжения с подогревом воды в водогрейном котле

В водонагревателях температура воды не должна превышать 75 °С. Воду с меньшей температурой получают путем смешивания горячей воды с холодной.

Рассмотрим схему централизованного горячего водоснабжения зданий от теплосети (рис. 1). В нее входят следующие основные элементы: 1 — скоростной подогреватель; 2 — горячий трубопровод от теплосети; 3 —обратный трубопровод в теплосеть; 4 — грязевик; 5 — бак для горячей воды; 6 — предохранительный клапан; 7 — трубопровод горячего водоснабжения; 8 — циркуляционный (обратный) трубопровод; 9 — центробежный насос; 10 — трубопровод от холодного водопровода.

Нагрев водопроводной воды производится в скоростном водоподогревателе при помощи перегретой воды, поступающей из теплосети. Отсюда нагретая вода подается по трубопроводам к водоразборным кранам. Водонагреватель может соединяться с баком для хранения горячей воды.

Циркуляция воды в системе осуществляется при помощи центробежного насоса и циркуляционных трубопроводов.

В системе горячего водоснабжения вода поступает в скоростной водоподогреватель. Холодная вода из водопровода нагревается и выделяет растворенный в ней воздух, который может вызвать коррозию металла. Поэтому водоподогреватель нужно присоединять так, чтобы греющая (первичная) вода проходила в межтрубном пространстве, а нагреваемая (вторичная) — по латунным трубкам, которые не подвергаются коррозии.

Централизованное горячее водоснабжение со скоростным водоподогревателем имеет ряд преимуществ перед другими устройствами. Оно может работать при наличии приборов автоматического контроля и регулирования.

На рис. 2 показана схема горячего водоснабжения с подогревом воды в водогрейном котле большой теплоемкости. В эту схему входят: 1 — котел большой теплоемкости; 2 — трубопровод для горячей воды из котла; 3— стояки; 4 — водоразборные устройства; 5 — обратная линия; 6 — насос; 7 — обратный клапан; 8 — трубопровод для холодной воды из водопровода.

Водоснабжение и канализация - Система горячего водоснабжение

gardenweb.ru

Системы отопления и горячего водоснабжения

Комфортное проживание в доме невозможно без эффективно работающих систем горячего водоснабжения (ГВС) и отопления. Современный рынок предлагает внушительный выбор теплового оборудования и множество технических решений, с помощью которых можно устроить эффективные системы отопления и горячего водоснабжения. Однако, как показывает практика, далеко не всегда результат отвечает ожиданиям. Чтобы избежать ошибок в устройстве инженерных сетей дома, следует тщательно изучить технологию монтажа и использовать качественные материалы и оборудование.

Автономные системы горячего водоснабжения и отопления.

Виды отопительных систем

Система отопления загородного дома может быть централизованной либо децентрализованной (автономной, индивидуальной). При централизованной системе отопления трубопроводы потребителя подключают напрямую к основной магистральной тепловой сети.

Система отопления загородного дома

Индивидуальные системы отопления могут быть:

  • воздушные,
  • водяные,
  • с использованием этиленгликоля;
  • с использованием масла;
  • электрического обогрева.

Водяные системы отопления в качестве теплоносителя используют воду, которая в свою очередь нагревается котлом и, проходя по трубопроводу, отдает свое тепло. При разных конструкциях и схемах происходит это через теплообменники или радиаторы.

Работа воздушного отопления основана на подогреве котлом воздуха, который впоследствии движется по воздуховодам. Также воздух может отдавать тепло и через дутьевые вентиляторы, установленные в стенах или на потолке. Сами же воздуховоды, как правило, утеплены и спрятаны в стены.

Этиленгликоль применяется в слабо используемых системах, когда существует возможность замерзания теплоносителя. Подобный раствор не боится низких температур и хорошо выдерживает высокие. Из минусов - слишком дорогое оборудование и последующая эксплуатация.

Масло используют при необходимости постоянных высоких температур. Долгий процесс остывания такого теплоносителя позволяет прогревать помещения до 25-30 градусов, а иногда ещё и выше. В жилом секторе, где приемлемой температурой считается 18-22 оС, применяется очень редко.

Электрический нагрев помещения происходит без использования теплоносителя - электроэнергия преобразуется в тепловую. Стоимость и количество потраченной энергии здесь напрямую зависит от заданной температуры.

Автономное отопление дома

Данный тип устройства обогрева помещения может основываться на естественной или принудительной циркуляции теплоносителя. Для принудительного перемещения жидкости используется циркуляционный насос. Неоспоримыми достоинствами такого устройства является: высокий комфорт (есть возможность регулировки температуры в помещении), использование труб небольшого диаметра, увеличение срока службы нагревательного котла. К недостаткам относится повышенный расход электроэнергии.

Автономное отопление дома

При естественной циркуляции вода движется по трубопроводу под действием гидравлики, когда возникает неоднородность среды (благодаря плотности и температуре). Недостатки – более низкий КПД и соответственно повышенный расход топлива и ресурса.

Кроме того, индивидуальные системы отопления могут быть закрытого и открытого типа. Последние использует открытый расширительный бак, в то время как закрытые сети предусматривает установку закрытого мембранного бака. Вторая система  имеет массу преимуществ:

  • нет необходимости устанавливать бак в самой высокой точке системы;
  • отсутствует контакт воды с воздухом, что исключает насыщение жидкости кислородом и преждевременный износ водопровода и котла, минимизируется риск образования воздушных пробок;
  • есть возможность создавать необходимое давление даже в самых высоких точках системы.

Автономная система горячего водоснабжения.

Несмотря на то, что на протяжении многих лет центральная система горячего водоснабжения была приоритетной, сегодня все большее число граждан выбирает автономные схемы и самостоятельную их комплектацию оборудованием. Современный домовладелец может выбрать наиболее приемлемый вариант из приведенных ниже:

  • проточная схема, предусматривающая расходный прогрев воды. Иными словами, когда открывается кран иначинает течь вода, тогда и происходит непосредственный нагрев.
  • емкостные схемы. Используют электрические нагреватели и баки-накопители, со встроенными теплообменниками. Нагрев происходит независимо от разбора. самый дешевый способ получения горячей воды.
  • комбинированные схемы. Такие системы горячего водоснабжения используют двухконтурные котлы  и накопительные баки для ГВС, емкостные водонагреватели и теплообменники промежуточного типа. Все это позволяет работать системе горячего водоснабжения в поточном режиме, если потребление горячей воды отвечает номинальной мощности теплообменника, а при пиковых расходах, превышающих номинальную мощность устройства, – в емкостном режиме с использованием воды из бака-накопителя.

Автономная система горячего водоснабжения

Теплоносителем для ГВС может быть вода, воздух или электричество. Система водоснабжения при этом (как и в отоплении) делится на открытую или закрытую, циркуляционную или естественную. Каждый из вариантом подбирается индивидуально с учетом потребностей потребителя и технических характеристик трубопроводов.

aquagroup.ru

РАЗНОВИДНОСТИ СИСТЕМ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

ТЕПЛОСНАБЖЕНИЕ

Наиболее простыми по устройству и дешевыми по первоначальной стоимости являются бесциркуляционные (тупиковые) системы, состоя­щие только из подающих трубопроводов (рис. 4.1,а). Основной недоста­ток таких систем состоит в остывании воды в трубопроводах при пере­рывах в водоразборе или его малой величине. Открывая кран после пе­рерыва в водоразборе, потребитель получает воду с пониженной темпе­ратурой и начинает сливать эту воду в канализацию до появления воды с нужной ему температурой. Такие сливы при общем ухудшении обеспе­чения потребителя горячей водой приводят к перегрузке канализации и бесполезным потерям воды и тепла. Из-за указанных недостатков бес­циркуляционные системы устраивают только в тех случаях, когда воз­можные сливы воды в канализацию невелики, а именно: при длительном непрерывном разборе воды (в банях, в технологических установках) и при малом протяжении сети. Во всех остальных случаях, особенно там, где требуется непрерывное обеспечение потребителей горячей водой (жи­лые здания, больницы, поликлиники и т. п.), устраиваются более слож­ные циркуляционные системы (рис. 4.1,6). В таких системах при отсут-

Ствии водоразбора находящаяся в трубах*вода не останавливается, а непрерывно перемещается, проходя через подогреватель, чем обеспечи­вается заданная температура воды вблизи точек водоразбора. В зави­симости от назначения систем циркуляция воды в них может осуществ­ляться или непрерывно в течение суток, или периодически перед нача­лом длительного водоразбора (например, в душевых с периодическим разбором воды).

В системах с поверхностными подогревателями циркуляция, как пра­вило, обеспечивается центробежными насосами; смешение рециркуля­ционной воды с нагреваемой водопроводной водой осуществляется по схемам, рассмотренным в гл. 2. В отдельных случаях циркуляция воды в системах горячего водоснабжения может обеспечиваться действием гравитационных сил, что целесообразно в мелких системах или-в систе­мах многоэтажных и малопротяженных зданий (в зданиях типа «баш­ня») при дополнительной застройке такими зданиями жилых кварталов и невозможности (или нерациональности) присоединения их систем го­рячего водоснабжения к существующим квартальным системам. Вопро­сы надлежащей организации циркуляции воды в системах горячего во­доснабжения, присоединенных к открытым системам теплоснабжения, рассмотрены в § 9.

По расположению подающей (разводящей) магистрали внутри дома различают системы с верхней (см. рис. 4.1) и нижнрй (рис. 4.2) развод­кой. Верхнюю разводку наиболее час то применяют при установке открытых (верхних) баков-аккумуляторов и при наличии в здании верхнего техническо­го этажа или чердака. Циркуляцион­ную магистраль прокладывают в этом случае в подвалах, а при их отсутствии в подпольных каналах. При наличии подвалов предпочтительнее нижняя разводка как более удобная для эксплуатационного обслуживания си­стемы.

В зданиях высотой более 50 м (свы­ше 16 этажей) систему горячего водо­снабжения делят по вертикали на зоны

С самостоятельными разводками и отдельными стояками для каждой зоны. Это связано в основном с ограничением допускаемого давления на водоразборную и водозапорную арматуру, которая в обычном исполне­нии выдерживает давление до 0,6 МПа.

Согласно СНиП П-34-76, в ванных и душевых комнатах ряда зданий и'помещений (жилые здания, лечебно-профилактические учреждения, дома отдыха, учреждения социального обеспечения, школы и учрежде­ния по воспитанию детей, гостиницы) должны устанавливаться полотен - цесушители, которые помимо своего прямого назначения являются еще и нагревательными приборами, обеспечивающими в этих комнатах по­вышенную температуру воздуха. Присоединяются полотенцесушители к циркуляционным или подающим стоякам (см. далее о водоразборных узлах). В тех случах, когда системы не имеют циркуляционных трубо­проводов, нормами допускается присоединение полотенцесушителей к системе отопления с устройством отдельной ветви и обеспечением круг­логодовой циркуляции ВОДЫ ПО ЭТОЙ ВеТВ'И.

Подающий стояк с ответвлениями (подводками) к водоразборным приборам каждой квартиры в тупиковых системах и сочетание подаю­щего и циркуляционного стояков, включая полотенцесушители и под­водки в квартиры, в циркуляционных системах образуют водоразборный узел. Устройство водоразборных узлов изменялось и продолжает изме­няться в связи с появлением новых конструктивных решений с&мих зда­ний, объединения в единую систему нескольких внутренних систем (квартальные системы), дальнейшей индустриализации строительства и, в частности, применения сборного домостроения с изготовлением са - нитарно-технических кабин на домостроительных комбинатах.

На рис. 4.3 приведены схемы водоразборных узлов с парными (по­дающим и циркуляционным) стояками, отличающиеся способом присое­динения полотенцесушителей к стоякам. Параллельное присоединение полотенцесушителей к стоякам (рис. 4.3,а) сложно в монтаже и приво­дит к образованию множества циркуляционных колец, при котором рас­пределить без превышения расчетный циркуляционный расход воды между отдельными приборами не удается даже при наличии перед каж­дым полотенцесушителем регулировочных кранов. Последовательное присоединение полотенцесушителей по схемам рис. 4.3,6 и в проще для

Монтажа н первоначальной регулировки расхода циркуляционной воды по отдельным узлам. Схема рис. 4.3,в с полотенцесушителями на цирку­ляционном стояіке экономичнее схемы рис. 4.3,6 с полотенцесушителями на подающем стояке. При одинаковой температуре воды у основания стояков для достижения одинаковой температуры воды у верхнего при­бора через узел по схеме рис. 4.3,6 потребуется пропускать больше цир­куляционной воды, так как остывание воды при прохождении ее по стояку с полотенцесушителями будет больше, чем остывание воды при прохождении ее по стояку без полотенцесушителей.

Увеличение объема нового строительства и переход к зданиям повы­шенной этажности вызвали появление новых, менее трудоемких реше­ний по устройству водоразборных узлов. На рис. 4.4 приведен узел из двух закольцованных стояков, один из которых является подающим (присоединен к подающей магистрали), а другой — водоразборно-цнр - куляционным (присоединен к циркуляционной магистрали). Оба стояка унифицированы, т. е. собраны из труб одного диаметра. Протяженность чисто циркуляционной части второго стояка очень мала и равна участку трубы от конечного (нижнего) ответвления к прибору до циркуляцион­ной магистрали. Унификация стояков в узле, облегчая и удешевляя монтаж, увеличивает расчетный циркуляционный расход воды в систе­ме, что является отрицательной стороной такого способа устройства уз­лов. Теоретически при одинаковых по диаметрам труб узлах расход циркуляционной воды через ближайший к началу системы узел должен быть несколько меньше расхода через дальний узел, так как при одина­ковых теплопотерях стояками в ближайший узел поступает менее ох­лажденная в разводящих трубопроводах вода. Фактически же при уни­фицированных узлах, т. е. узлах равного гидравлического сопротивления, через ближайший узел проходит больше циркуляционной воды, чем че­рез дальний узел. Происходит это вследствие увеличения к началу сис­темы разности давлений в подающей и циркуляционной магистралях. Уменьшить ненужное увеличение расхода циркуляционной воды через ближайшие к началу системы узлы, а следовательно, уменьшить и об­щий расчетный расход циркуляционной воды можно увеличением гид­равлического сопротивления первых по ходу воды узлов. Но так как диаметры подающих (водоразборцых) стояков уменьшить нельзя, ибо эти диаметры выбираются по максимальному расходу воды на водораз - бор, то увеличить гидравлическое сопротивление водоразборного узла можно только или уменьшением диаметра труб чисто циркуляционного участка водоразборно-цнркуляционного стояка (см. рис. 4.4), или уста­новкой на этом'участке стояка дроссельной шайбы. Как известно, мини­мальный диаметр выпускаемых труб равен 15 мм, а пропускное отверс­тие шайб, применяемых в горячем водоснабжении, не делают менее 10 мм во избежание его засорения. При указанных ограничениях оба упомянутых решения не всегда позволяют получить желаемое увеличе­ние гидравлического сопротивления парнозакольцованных стояков в циркуляционном режиме.

В новых конструктивных решениях водоразборных узлов (рис. 4^5) повышение их гидравлического сопротивления в циркуляционном режи­ме достигается или кольцеванием поверху нескольких подающих стоя­ков и превращением одного стояка из группы закольцованных стояков в циркуляционно-водоразборный стояк,-или устройством для группы закольцованных стояков дополнительного чисто циркуляционного стоя­ка. Последнее решение (рис. 4.5,6) позволяет наиболее просто осущест­вить увеличение гидравлического сопротивления узла, но при этом не­сколько осложняется монтаж системы, особенно при наличии стандарт­ных санитарно-технических кабин: появляются дополнительные работы по монтажу самого стояка и пробивки для него отверстий в перекрыти-

Рис. 4.5. Посекци­онно закольцован­ные стояки

А — с водоразборно - циркуляционным стояком; б — с до­полнительным цирку­ляционным стояком

I

Ях этажей. Такого рода работы отсутствуют при наличии в группе за­кольцованных стояков одного водоразборно-циркуляционного стояка (рис. 4.5,а), что делает такое решение более соответствующим инду­стриальному способу производства работ. Потери давления в таком уз­ле в циркуляционном режиме увеличиваются в результате пропуска че­рез один водоразборно-циркуляционный стояк суммарного циркуляци­онного расхода воды от нескольких подающих стояков и могут быть до­полнительно увеличены одним из тех приемов, о которых упоминалось выше: уменьшением диаметра чисто циркуляционной части водоразбор­но-циркуляционного стояка «ли установкой на этой части стояка дрос­сельной шайбы.

Применяемое в последние годы кольцевание подающих стояков поз­волило несколько уменьшить их диаметры. Так ікак одновременный мак­симальный водоразбор из всех закольцованных стояков очень мало ве­роятен, то при максимальной загрузке одного из закольцованных стоя­ков поступление в него воды может происходить не только непосредст­венно из подающей разводящей трубы, но и через соседние, малозагру - женные в этот момент времени, стояки и верхнюю перемычку между стояками.

В закрытых системах теплоснабжения в последние 15—20 лет полу­чили широкое распространение квартальные (мцкрорайонные) системы горячего водоснабжения. Причиной появления таких систем послужила несколько повышенная звукопроводность жилых зданий в первый пе­риод развития сборного домостроения, при которой оказалось невоз­можным размещение подогревательных установок в подвалах зданий из-з-а шума, создаваемого циркуляционным насосом. В результате воз­никли выносные подогревательные установки, размещаемые в специаль­ных строениях и обслуживающие несколько зданий. Такие групповые подогревательные установки получили название центральных тепловых пунктов — ЦТП, а подоіревательньїе установки, размещаемые в подва­лах зданий (там, где это возможно) и обслуживающие только одно зда­ние, стали называть индивидуальными тепловыми пунктами — ИТП. Проведенное позже технико-экономическое сопоставление ЦТП и ИТП показало известное экономическое преимущество центральных тепловых пунктов и позволило установить их оптимальную мощность, определяе­мую в 50—100 ГДж/ч.

Различают системы горячего водоснабжения еще и по наличию или отсутствию в них баков-аккумуляторов горячей воды. Аккумуляторы позволяют уменьшить расчетный расход тепла на приготовление быто­вой воды, снижая его от максимального часового до среднечасового в течение суток. Это удешевляет не только источник тепла, но и тепловые сети между источником тепла и местом присоединения аккумулятора к тепловой сети. В закрытых системах теплоснабжения дополнительно

Рис 4 6 Схемы включения аккумуляторов Я — подогреватель, А — аккумулятор; Я — зарядочно-циркуля-

Ционныи насос, Я, — зарядочный насос Яа — дополнительный циркуляционный насос, п — дополнительный подогреватель циркуляционной воды

Уменьшается еще и поверхность нагрева подогревателей водопроводной воды. Однако аккумуляторы требуют дополнительных затрат на их из­готовление и установку, в связи с чем вопрос о целесообразности их при­менения должен решаться на основе результатов соответствующих тех­нико-экономических расчетов.

В закрытых системах теплоснабжения аккумуляторы устанавлива­ются в ЦТП или ИТП, в открытых системах теплоснабжения — у источ­ника тепла и у отдельных абонентов (в ИТП). В местных системах го­рячего водоснабжения аккумуляторы могут располагаться в верхней или нижней точке системы. По принципу аккумуляции тепла аккумуля­торы могут быть с постоянной температурой и переменным объемом во­ды или с переменной температурой и постоянным объемом воды.

Различают аккумуляторы й по давлению находящейся в них воды: открытые — сообщающиеся с атмосферой; закрытые — находящиеся под давлением. На рис. 4.6 приведены различные схемы включения аккуму­ляторов в системы.

В верхнем открытом баке-аккумуляторе (рис. 4.6,а) при среднем во­доразборе уровень воды в баке не изменяется: сколько воды уходит из бака на водоразбор и циркуляцию, столько же поступает в бак от подо­гревателя. При водоразборе более среднего объем волы в баке умень­шается, при водоразборе менее среднего объем воды в баке увеличива­ется. При отсутствии водоразбора через подогреватель и бак прохоаит только циркуляционный расход.

Недостаток схемы с открытым нижним баком-аккумулятором (рис. 4.6,6) состоит в потере давления исходной воды и необходимости установки специального насоса для подкачки воды в систему. Схема применяется при малом давлении воды перед подогревателем или при использовании термальных вод с малым давлением воды на выходе из скважины.

При низкорасположенном напорном баке (рис. 4.6,в) насос и диа­метры труб на участке 1 — Н — П — 2 подбираются так, чтобы при сред­нечасовом расходе воды потери давления на этом участке, включая по­тери давления в подогревателе, были равны разности давлений, созда­ваемой насосом, т. е. чтобы при среднечасовом расходе воды разность давлений в точке 2 ив точке 1 была равна нулю. Следовательно, при среднем водоразборе#движение воды через аккумулятор и по циркуля­ционным трубопроводам отсутствует.

Допустим, что такое состояние системы наступило после периода большого водоразбора и весь объем бака-аккумулятора оказался запол­ненным холодной водой. Если теперь водоразбор станет меньше средне­часового, то количество воды, протекающей по участку 1—Н— П—2, также уменьшится и станет меньше среднечасового, но больше водораз­бора. При этом потери давления на участке 1—Н — П—2 станут мень­ше разности давлений, создаваемой насосом, и давление в точке 2 ста­нет больше, чем давление в точке 1 начнется движение воды и по цир­куляционным трубам, и через аккумулятор. Холодная вода из нижней части аккумулятора будет уходить и смешиваться с поступающей водо проводной водой, а верхняя часть аккумулятора будет заполняться го­рячей водой. Так как плотность горячей воды меньше плотности холод­ной воды, то перемешивания воды в аккумуляторе не произойдет.

Процесс зарядки аккумулятора и циркуляция воды в системе усили­ваются с уменьшением! водоразбора и достигают наибольшей интенсив­ности при отсутствии водоразбора (например, в жилых зданиях ночью), а затем при последующем возрастании водоразбора начинают замед­ляться. В результате когда водоразбор снова достигает среднечасовой величины, весь аккумулятор оказывается заполненным горячей водой. При дальнейшем увеличении водоразбора расход воды на участке 1—Н — П—2 становится больше среднечасового, но меньше водоразбо­ра, потери давления на участке 1 — II - П — 2 начинают превышать раз­ность давлений, создаваемую насосом, и давление в точке 2 становится меньше давления в точке 1. В нижнюю часть аккумулятора начинает поступать холодная вода, а горячая вода из верхней части аккумулято­ра уходит в систему. Во избежание проникания холодной воды в цирку­ляционные трубопроводы (так называемого «опрокидывания» циркуля­ции) на циркуляционном трубопроводе устанавливается обратный кла­пан.

Существенным недостатком схемы, показанной на рис. 4.6,в, являет­ся периодическая pa6oja циркуляции, которая осуществляется только при водоразборах меньше среднечасового.

Для более надежного обеспечения циркуляции, что является совер­шенно необходимым в протяженных (например, квартальных) системах, А. В. Хлудовым была предложена несколько иная схема включения нижнего аккумулятора (рис. 4.6,г). По этой схеме, показавшей надеж­ную работу циркуляции на практике, предусматривается дополнитель­ная установка самостоятельного циркуляционного насоса (кроме заря­дочного) и небольшого отдельного подогревателя для подогрева цирку­ляционной воды. Принцип же зарядки и разрядки аккумулятора остает­ся таким же, как и при схеме на рис. 4.6,в.

В небольших тупиковых системах периодического действия, напри­мер в системах душевых промышленных предприятий, применяют обыч­но аккумуляторы продавливания со встроенным (рис. 4.7,а) или вынос­ным (рис. 4 7,6) подогревателем. Встроенные подогреватели имеют бо­лее развитую поверхность нагрева (по сравнению с выносными), что обусловливается малыми коэффициентами теплопередачи в них вслед­ствие конвективного характера движения воды около поверхности на­грева. При непрерывном, но неравномерном отборе воды из аккумуля­тора продавливания температура выходящей из него воды неодинакова во времени, что является следстви

msd.com.ua


.