Система очистки воды обратного осмоса. Система обратного осмоса


Обратный осмос, системы обратного осмоса

КАТАЛОГ СИСТЕМ ПРОМЫШЛЕННОГО ОБРАТНОГО ОСМОСА

Процесс обратного осмоса, как способ очистки воды, используется с начала 60-х годов. Первоначально он применялся для опреснения морской воды. Сегодня по принципу обратного осмоса в мире производятся сотни тысяч тонн питьевой воды в сутки.

Совершенствование технологии сделало возможным применение обратноосмотических систем в домашних условиях. На настоящий момент в мире уже установлены тысячи таких систем. Получаемая обратным осмосом вода имеет уникальную степень очистки. По своим свойствам она близка к талой воде древних ледников, которая признается наиболее экологически чистой и полезной для человека. Информация об устройствах очистки воды на основе мембран обратного осмоса, предлагаемых группой компаний WATER.RU представлена в подразделе "Мембранные системы" раздела "Продукция".

Устройство и принцип действия мембранных систем обратного осмоса

Деминерализация исходной воды в обратноосмотическом модуле основана на принципе обратного осмоса – отделение деминерализованной воды от минерализованной через тонкопленочную полупроницаемую мембрану под давлением выше осмотического (баромембранный процесс), которое для заданных условий и типа применяемых мембран составляет от 8-12 bar для слабоминерализованных вод до 55 – 60 bar для морской воды. При таком давлении через поры синтетических композитных мембран проходят молекулы чистой воды и задерживаются гидратированные солеобразующие ионы: НСО3-, SO2-, С1-, Са2+, Mg2+, Na+, K+, Fe2+, Cu2+ и ряд других микроэлементов, имеющие значительно больший размер.

Следует иметь в виду, что полезная производительность модуля (по деминерализованной воде) не равна производительности насоса высокого давления, а всегда меньше, что в свою очередь зависит от температуры и ионного состава исходной воды – в основном от сульфатно-кальциевого соотношения и общей минерализации.

Установка обратного осмоса или мембранный модуль состоит из:

  • патронного или мультипатронного фильтра тонкой очистки (тонкость фильтрации 5 мкм)
  • насоса высокого давления
  • мембранной группы
  • средств автоматики и регулирующих элементов
  • КИП
  • пульта управления
  • опорной рамной конструкции
  • системы промывки мембранных элементов CIP
Чертежи вы можете посмотреть здесь.

Конструктивное исполнения установки обратного осмоса определяется качественным составом исходной воды, уровнем общего солесодержания и количеством мембранных элементов необходимых для получения требуемой производительности установки. По конструктивному исполнению можно выделить три основные группы установок. В основе конструктивного и компоновочного решения лежит способ организации мембранной группы, который, в свою очередь, определяет процентное отношение очищенной воды и концентрата.

К первой группе мы относим установки малой производительности ( от 0,1 до 5 куб.м/час).

Основным отличием установок этой группы является то, что один или несколько мембранных элементов установлены в одном напорном корпусе. Такое решение позволяет разрабатывать и изготавливать простые и не дорогие системы обратного осмоса. Компоновка установок может быть вертикальной, в случае использования одного мембранного элемента или горизонтальной, когда используется несколько элементов.

Ко второй группе мы относим установки малой и средней производительности и установки для солоноватой воды.

Для установок этой группы характерно то, что несколько мембранных элементов установлены в два, параллельно подключенные напорные корпуса. Такое решение позволяет разрабатывать и изготавливать более сложные системы обратного осмоса с высоким выходом очищенной воды. Установки этой группы способны работать на более соленых водах, включая морскую. Компоновка - горизонтальная. Количество корпусов в мембранной группе может быть кратное 2.

И, наконец, самая интересная и сложная, третья группа установок высокой производительности. Особенностью этих установок является то, что концентрат с основной группы подается на дополнительную группу мембран, чем достигается высокий процент выхода чистой воды с установки. Такое решение позволяет доводить отношение фильтрата к концентрату до 75%, что в конечном итоге уменьшает общее энергопотребление установки, сброс в канализацию и стоимость очищенной воды. Однако необходимо учитывать, что дополнительная группа мембранных элементов работает в более тяжелых условиях, чем основная, а это вынуждает принимать дополнительные меры по восстановлению или промывке мембран. В обратноосмотических системах, которые мы относим к третьей группе, реализуется более сложная технологическая схема, аппаратная часть и алгоритм управления установкой.

Основу любой обратноосмотической установки составляет несущая рама. Разработке рам мы уделяем особое внимание. Рама не только определяет внешний вид установки. но и обеспечивает прочность и жесткость конструкции и оптимальную компоновку системы, что создает удобство в эксплуатации, обслуживании и ремонте как всей системы в целом, так и отдельных ее компонентов. Мы проектируем раму с учетом особенностей каждого конкретного объекта и изготавливаем на специализированном предприятии. Мы применяем рамы из нержавеющей стали или станочного алюминиевого профиля, реже, окрашенные металлические конструкции. В зависимости от требований к изделию рама обязательно укомплектована регулируемыми по высоте опорами или, дополнительно, колесными опорами.

На раме смонтированы: многоступенчатый центробежный насос, мембранная группа, 5 мкм мультипатронный фильтр, запорный электромагнитный клапан, реле давления и обратный клапан система промывки мембран. На передней панели рамы размещены ротаметры чистой воды и концентрата, манометры измерения давлений входной воды и рабочего давления, регулировочный вентиль изменения рабочего давления в линии концентрата и шкаф управления установкой. На трубопроводе в линии входной воды перед насосом последовательно смонтированы: фильтр тонкой очистки 5 мкм, электромагнитный нормально-закрытый клапан, реле защиты насоса «по сухому ходу» и обратный клапан.

На трубопроводе в линии деминерализованной воды установлен предохранительный клапан, обеспечивающий аварийный сброс воды при давлении в линии деминерализованной воды выше 3 bar и датчик кондуктометра – измерителя удельной электропроводимости обессоленной воды.

Проточные части насоса выполнены из нерж.стали, проточные части клапана и реле давления выполнены из латуни, монтаж трубопроводов выполнен из полипропилена, арматура и фитинги выполнены из нерж.стали, латуни и бронзы.

Обратноосмотический модуль полностью агрегатирован и подключается в составе установки водоподготовки к трубопроводам исходной воды, деминерализованной воды и слива в канализацию. Пульт управления модуля подключается к линии 3-х фазного переменного тока 380 В/ 50 Гц.

Принцип действия

Осмос

Явление осмоса лежит в основе обмена веществ всех живых организмов. Благодаря ему в каждую живую клетку поступают питательные вещества и, наоборот, выводятся шлаки.

Явление осмоса наблюдается, когда два соляных раствора с разными концентрациями разделены полупроницаемой мембраной.

Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет.

Если по разные стороны полупроницаемой мембраны находятся солесодержащие растворы с разной концентрацией, молекулы воды будут перемещаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Из-за явления осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением.

Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется "осмотическим давлением".

В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.

Этот процесс называется "обратным осмосом". По этому принципу и работают все мембраны обратного осмоса.

В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.

Примечание

В системах обратного осмоса бытового назначения давление входной воды на мембрану соответствует давлению воды в трубопроводе. В случае, если давление возрастает, поток воды через мембрану также возрастает.

На практике, мембрана не полностью задерживает растворенные в воде вещества. Они проникают через мембрану, но в ничтожно малых количествах. Поэтому очищенная вода все-таки содержит незначительное количество растворенных веществ. Важно, что повышение давления на входе не приводит к росту содержания солей в воде после мембраны. Наоборот, большее давление воды не только увеличивает производительность мембраны, но и улучшает качество очистки. Другими словами, чем выше давление воды на мембране, тем больше чистой воды лучшего качества можно получить.

В процессе очищения воды концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвращения этого вдоль мембраны создается принудительный поток воды, смывающий "рассол" в дренаж.

Эффективность процесса обратного осмоса в отношении различных примесей и растворенных веществ зависит от ряда факторов. Давление, температура, уровень рН, материал, из которого изготовлена мембрана, и химический состав входной воды, влияют на эффективность работы систем обратного осмоса.

Неорганические вещества очень хорошо отделяются обратноосмотической мембраной. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.

Мембрана обратного осмоса также удаляет из воды и органические вещества . Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.

В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она, строго говоря, даже не требует кипячения.

Подробнее ознакомиться с системами обратного осмоса вы можете здесь.

www.water.ru

Обратный осмос промышленного назначения

Сегодня на промышленную установку обратного осмос ставят многие предприятия промышленности. В основу метода легло природное явление. Он относиться к мембранному методу удаления загрязнений. Обратноосмотический способ способен полностью решить вопросы очистки во многих областях жизнедеятельности человека. Примером служит промышленная система обратного осмоса фильтрации воды для котлов, различных технологий, пищевого назначения и удаление солей в морской воде. Иногда промышленные системы называют мембранными опреснителями воды. В процессе обработки жидкость полностью обессоливается обратноосмотическим способом.

Использование мембраны

Системы очистки воды

Системы очистки воды

В обратноосмотических системах используется мембрана с пористой структурой. Ее изготавливают из тонкого слоя пленки композиционного материала с множеством пор. Их пространство должно пропускать только молекулы воды, а примеси задерживать. Обычно в промышленных установках используют диаметр пор 0,0001 микрон. Что бы начался процесс очистки, необходимо обеспечить осмотическое давление – сила подачи воды на поверхность мембраны, что бы водные молекулы могли пройти по порам. Скорость очистки воды прямо пропорциональна осмотическому давлению, температурному диапазону воды и концентрации солей. Так в низконапорном осмосе обеспечивают давление от 6 атм, а в высоконапорном – от 15 атм. Сильно соленые воды, к примеру морская, требует рабочего осмотического давления  от 45 до 80 атм.

В системе обратного осмоса воду разделяют на два потока:

  • пермеат или фильтрат – вода, прошедшая фильтрация;
  • рассол или концентрат – вода, которая идет в дренажные системы или дополнительно обрабатывается.

Применение промышленных систем

Промышленные установки выбирают исходя из условий работы. Дополнительно учитывают производительность системы, что бы обеспечить очистку сего объема подаваемой воды. Лучше воспользоваться консультацией специалистов в индивидуальном порядке.

Обращают внимание на количество мембран, производительности насоса, степенью управления, контрольно-измерительными приборами и другие необходимые параметры конструкции. Главная задача – получить требуемый пермеат и его постоянную выработку для определенного типа объекта.

Комплекс учитывает исходный и требуемы состав воды. Например, вода химической отрасли предварительно подергается механической и ионной очистки, а  сельскохозяйственной – механическая фильтрация, аэробное окисление и умягчение воды.

Промышленая установка обратного осмосу

Промышленая установка обратного осмосу

Установку монтируют на стене или в защищенном от пыли шкафу. Дополнительно могут установить УФ дезинфектор и емкости для сбора воды.

Устройство установки обратного осмоса

Значимыми в промышленности являются двухкаскадные фильтры для обратного осмоса. Очищаемая жидкость подается на первую мембрану. Далее фильтрат отправляют во второй мембранный блок.  Вода на выходе полностью обессолена или глубоко опресненная. Она используется в электронике и химической промышленности на некоторых этапах.

При разработке установки очистки обратного осмоса в промышленных целях придерживаются следующих правил:

  • первоочередная подготовка воды и конструкция обратноосмотической системы устанавливается для определенного химического состава воды, требований к очищенной воде и условий работы;
  • система очистки воды обратного осмоса должна полностью покрывать нужды производства;
  • все материалы и комплектующие должны иметь сертификат на использования в пищевой промышленности;
  • максимально использовать энергосберегающие технологии;
  • автоматическое управление должно производиться по трем критериям: временная циклограмма, объем очищенной воды, ручное управление;
  • во время работы должны контролироваться давление, температура воды, время работы, солевой состав, значение рН и другие параметры;
  • предусматривают регулирование концентрации микроэлементов в отфильтрованной воде, а так же блокировка при нарушениях в работе или качестве воды;
  • паспортное значение производительности должно быть на протяжении всего срока эксплуатации при любой температуре;
  • в технической эксплуатации должно быть подробно описаны установка и запуск системы, ее обслуживание в целом и отдельных частей.

В основе установке обратного осмоса лежит несущая рама. Она не только оказывает влияние на внешний вид системы, но и необходима для обеспечения жесткости и прочности. Правильная компоновка системы облегчит монтаж, использование и обслуживание всего оборудования. Обычно раму можно регулировать по высоте и передвигать на колесах.

На раму устанавливают центробежный насос с несколькими ступенями, электромагнитный клапан, реле давления и обратный клапан для промывки мембраны. Впереди рамы монтируют ротаметр, манометр, шкаф управления и регулируемый вентиль.

На трубопроводе подаваемой воды в следующей последовательности устанавливают механический фильтр, электромагнитный клапан, реле защиты и обратный клапан.

На выходе воды трубопровод оснащен предохранительным клапаном и кондуктометром.

Установки обратного осмоса промышленного назначения полностью укомплектованы и монтируются напрямую в водопровод.

Виды промышленных установок

Один из видов промышленых установок обратного осмосу

Один из видов промышленых установок обратного осмосу

Существует 3 варианта конструкций. Построение мембранной группы зависит от отношения полученной воды к концентрату.

Первый вид включает малопроизводительные установки – до 5 кубических метро в час. Все мембранные элементы в этом виде монтированы в одном напорном корпусе. Так лостигается максимальная  простота и дешевизна.  При одной мембране установку делают вертикальной, при нескольких – горизонтальной.

Второй вид состоит из систем средней производительности. Все мембранные элементы распределены по двум параллельным корпусам. Сложность системы обосновывается большим выходом. Она может очищать морские воды. Компонуют установки горизонтально с  четным числом корпусов.

Самым сложным видом является третий, который обладает большой производительностью. Он отличается подачей концентрата на дополнительные мембраны, что бы обеспечить максимально допустимый выход отфильтрованной воды (до 75%), энергосбережение, выбросы в канализацию и себестоимость полученной воды. Дополнительные мембраны переносят большую нагрузку, так как концентрат содержит больше примесей. Что бы обеспечить равномерную работу, предусматривают очистку или регенерацию  дополнительных мембран. Эта группа имеет управляется сложное управление и аппаратным обеспечением.

Принцип работы промышленного осмоса

Удаление солей из воды происходит благодаря принципу обратного осмоса. Соленая вода прокачивается через полупроницаемую тонкую мембрану под воздействием определенного давления. Оно необходимо для прохождения молекул воды и задержание солевые ионы и микроэлементы.

Производительность мембранной системы не равняется производительности насоса, а намного ниже. На нее влияет температура и концентрация примесей.

Достоинства промышленной установки обратного осмоса

Если на производстве используются сложные технологии или дорогое оборудование, то метод обратного осмоса достаточно актуален.

Как упоминалось выше, систему возможно дополнить УФ лампой, минерализатором и другими нужными устройствами.

Жидкость очищается на 99% и не причинит вред ни человеческому организму, ни сложному производству.

Недостатки обратноосмотической системы

Установка бессильна перед газообразной формой хлора и некоторой органикой. Благодаря меньшим молекулам гербициды, хлор и другие вещества свободно проходят через поры мембраны.

Сегодня поднимается вопрос о вреде использования в пищу деминерализованной воды.

На выходе объем пермеанта составляет только треть всего объема подаваемой жидкости.

vse-o-vode.ru

Как работает система очистки воды обратного осмоса

Что собой представляет обратный осмос

Действие этого механизма, а точнее принцип, по которому он действует, позаимствован у природы. Все живые организмы питаются полезными веществами по точно такому же принципу.

Все материалы, которые существуют в нашей природе, можно условно разделить в зависимости от водонепроницаемости на три типа. Первый – материалы, пропускающие жидкость. Второй тип – непропускающие жидкость материалы. И третий вид – это пропускающие воду материалы, но задерживающие все загрязнений, которые растворены в ней. Их название – полунепропускные мембраны. Осмос – это процесс прохождения сквозь такие мембраны жидкости.

Пример обратного осмоса

Чтобы понять, что же это такое, рассмотрим небольшой пример. Нужно взять емкость и разделить ее на две равных части. Для разделении используем полунепропускную мембрану. В левую часть посудины нужно залить соляной раствор высокой концентрации, а в правую – такой же раствор, но с намного меньшим количеством соли. И один и второй раствор пытается сделать концентрацию соли равной. Именно поэтому из той части, где находится большая концентрация соли, жидкость перетекает туда, где соли меньше.

Именно так происходит выравнивание солености обеих жидкостей. Раствор в одной части понижается, а в другой, понятное дело повышается. Разница в этих уровнях ровно такая же, с какой силой было воздействие на процесс прохождения воды сквозь мембрану. Эту силу называют осмотическое давление, сам же происходящий процесс – обратный осмос.

Этот процесс может проходить точно так же, но с направлением в обратную сторону. Для этого необходимо оказывать давление на ту часть емкости, в которой уровень солесодержания более высокий. В результате в ней уменьшиться количество соляного раствора, но соли будут в большем количестве. Эта модель имеет названия обратного осмоса.

Обратноосмотические системы

Очищать воду на основе этой системы намного выгоднее, чем дистиллировать ее, причем как с конструкционной стороны, так и с экономической. Система очистки воды обратного осмоса дает возможность получить качественную и чистую воду, она работает намного эффективнее, нежели другие методы фильтрации.

Для изготовления обратноосмотических мембран используют синтетические полимерные материалы. Эта мембрана задерживает все высокомулярные типы загрязнений, а вот низкомолекулярные, наоборот, пропускает. К пропускаемым веществам относится углекислый газ, кислород, хлор.

Обратноосмотические системы разделяют воду на две части. Первая часть имеет название пермиат (это вода практически в идеально чистом состоянии), а вторая часть называется концентрат (все отделенные загрязнения). Концентратами являются вещества органического характера, коллоиды, микроорганизмы, растворенные соли.

Оболочка может иметь разные параметры, и в зависимости от этого, а также от условий очистки и от состава загрязнений, обратноосмотическая система может очистить воду от 94 до 99, 9%. Чтобы фильтровать жидкость, достаточное давление – от 7-25 атмосфер. Чтобы опреснить жидкость нужно до 70 атмосфер.

Преимущества обратноосмотических систем

  • Мембрана имеет длительный срок службы – более трех лет.
  • Рабочее давление относительно невысокое – от 8 до 10 атмосфер.
  • Очистка воды до 99,7%.
  • В канализацию сбрасывается лишь 25%.
  • Наличие автоматизированной гидравлической промывки.
  • Министерство здравоохранения разрешает использовать систему обратного осмоса в фармацевтической промышленности.

Если вы решили установить эту прекрасную систему, то вы должны знать, что изначально нужно разобраться с составом воды, которая поступает. Имеют смысл разные анализы, которые установят, какую нужно проводить предочистку воды.

Что купить проточный фильтр для воды или обратный осмос: Видео

vseowode.ru

Обратный осмос, системы обратного осмоса

КАТАЛОГ СИСТЕМ ПРОМЫШЛЕННОГО ОБРАТНОГО ОСМОСА

Процесс обратного осмоса, как способ очистки воды, используется с начала 60-х годов. Первоначально он применялся для опреснения морской воды. Сегодня по принципу обратного осмоса в мире производятся сотни тысяч тонн питьевой воды в сутки.

Совершенствование технологии сделало возможным применение обратноосмотических систем в домашних условиях. На настоящий момент в мире уже установлены тысячи таких систем. Получаемая обратным осмосом вода имеет уникальную степень очистки. По своим свойствам она близка к талой воде древних ледников, которая признается наиболее экологически чистой и полезной для человека. Информация об устройствах очистки воды на основе мембран обратного осмоса, предлагаемых группой компаний WATER.RU представлена в подразделе "Мембранные системы" раздела "Продукция".

Устройство и принцип действия мембранных систем обратного осмоса

Деминерализация исходной воды в обратноосмотическом модуле основана на принципе обратного осмоса – отделение деминерализованной воды от минерализованной через тонкопленочную полупроницаемую мембрану под давлением выше осмотического (баромембранный процесс), которое для заданных условий и типа применяемых мембран составляет от 8-12 bar для слабоминерализованных вод до 55 – 60 bar для морской воды. При таком давлении через поры синтетических композитных мембран проходят молекулы чистой воды и задерживаются гидратированные солеобразующие ионы: НСО3-, SO2-, С1-, Са2+, Mg2+, Na+, K+, Fe2+, Cu2+ и ряд других микроэлементов, имеющие значительно больший размер.

Следует иметь в виду, что полезная производительность модуля (по деминерализованной воде) не равна производительности насоса высокого давления, а всегда меньше, что в свою очередь зависит от температуры и ионного состава исходной воды – в основном от сульфатно-кальциевого соотношения и общей минерализации.

Установка обратного осмоса или мембранный модуль состоит из:

  • патронного или мультипатронного фильтра тонкой очистки (тонкость фильтрации 5 мкм)
  • насоса высокого давления
  • мембранной группы
  • средств автоматики и регулирующих элементов
  • КИП
  • пульта управления
  • опорной рамной конструкции
  • системы промывки мембранных элементов CIP
Чертежи вы можете посмотреть здесь.

Конструктивное исполнения установки обратного осмоса определяется качественным составом исходной воды, уровнем общего солесодержания и количеством мембранных элементов необходимых для получения требуемой производительности установки. По конструктивному исполнению можно выделить три основные группы установок. В основе конструктивного и компоновочного решения лежит способ организации мембранной группы, который, в свою очередь, определяет процентное отношение очищенной воды и концентрата.

К первой группе мы относим установки малой производительности ( от 0,1 до 5 куб.м/час).

Основным отличием установок этой группы является то, что один или несколько мембранных элементов установлены в одном напорном корпусе. Такое решение позволяет разрабатывать и изготавливать простые и не дорогие системы обратного осмоса. Компоновка установок может быть вертикальной, в случае использования одного мембранного элемента или горизонтальной, когда используется несколько элементов.

Ко второй группе мы относим установки малой и средней производительности и установки для солоноватой воды.

Для установок этой группы характерно то, что несколько мембранных элементов установлены в два, параллельно подключенные напорные корпуса. Такое решение позволяет разрабатывать и изготавливать более сложные системы обратного осмоса с высоким выходом очищенной воды. Установки этой группы способны работать на более соленых водах, включая морскую. Компоновка - горизонтальная. Количество корпусов в мембранной группе может быть кратное 2.

И, наконец, самая интересная и сложная, третья группа установок высокой производительности. Особенностью этих установок является то, что концентрат с основной группы подается на дополнительную группу мембран, чем достигается высокий процент выхода чистой воды с установки. Такое решение позволяет доводить отношение фильтрата к концентрату до 75%, что в конечном итоге уменьшает общее энергопотребление установки, сброс в канализацию и стоимость очищенной воды. Однако необходимо учитывать, что дополнительная группа мембранных элементов работает в более тяжелых условиях, чем основная, а это вынуждает принимать дополнительные меры по восстановлению или промывке мембран. В обратноосмотических системах, которые мы относим к третьей группе, реализуется более сложная технологическая схема, аппаратная часть и алгоритм управления установкой.

Основу любой обратноосмотической установки составляет несущая рама. Разработке рам мы уделяем особое внимание. Рама не только определяет внешний вид установки. но и обеспечивает прочность и жесткость конструкции и оптимальную компоновку системы, что создает удобство в эксплуатации, обслуживании и ремонте как всей системы в целом, так и отдельных ее компонентов. Мы проектируем раму с учетом особенностей каждого конкретного объекта и изготавливаем на специализированном предприятии. Мы применяем рамы из нержавеющей стали или станочного алюминиевого профиля, реже, окрашенные металлические конструкции. В зависимости от требований к изделию рама обязательно укомплектована регулируемыми по высоте опорами или, дополнительно, колесными опорами.

На раме смонтированы: многоступенчатый центробежный насос, мембранная группа, 5 мкм мультипатронный фильтр, запорный электромагнитный клапан, реле давления и обратный клапан система промывки мембран. На передней панели рамы размещены ротаметры чистой воды и концентрата, манометры измерения давлений входной воды и рабочего давления, регулировочный вентиль изменения рабочего давления в линии концентрата и шкаф управления установкой. На трубопроводе в линии входной воды перед насосом последовательно смонтированы: фильтр тонкой очистки 5 мкм, электромагнитный нормально-закрытый клапан, реле защиты насоса «по сухому ходу» и обратный клапан.

На трубопроводе в линии деминерализованной воды установлен предохранительный клапан, обеспечивающий аварийный сброс воды при давлении в линии деминерализованной воды выше 3 bar и датчик кондуктометра – измерителя удельной электропроводимости обессоленной воды.

Проточные части насоса выполнены из нерж.стали, проточные части клапана и реле давления выполнены из латуни, монтаж трубопроводов выполнен из полипропилена, арматура и фитинги выполнены из нерж.стали, латуни и бронзы.

Обратноосмотический модуль полностью агрегатирован и подключается в составе установки водоподготовки к трубопроводам исходной воды, деминерализованной воды и слива в канализацию. Пульт управления модуля подключается к линии 3-х фазного переменного тока 380 В/ 50 Гц.

Принцип действия

Осмос

Явление осмоса лежит в основе обмена веществ всех живых организмов. Благодаря ему в каждую живую клетку поступают питательные вещества и, наоборот, выводятся шлаки.

Явление осмоса наблюдается, когда два соляных раствора с разными концентрациями разделены полупроницаемой мембраной.

Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет.

Если по разные стороны полупроницаемой мембраны находятся солесодержащие растворы с разной концентрацией, молекулы воды будут перемещаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Из-за явления осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением.

Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется "осмотическим давлением".

В случае, когда на раствор с большей концентрацией воздействует внешнее давление, превышающее осмотическое, молекулы воды начнут двигаться через полупроницаемую мембрану в обратном направлении, то есть из более концентрированного раствора в менее концентрированный.

Этот процесс называется "обратным осмосом". По этому принципу и работают все мембраны обратного осмоса.

В процессе обратного осмоса вода и растворенные в ней вещества разделяются на молекулярном уровне, при этом с одной стороны мембраны накапливается практически идеально чистая вода, а все загрязнения остаются по другую ее сторону. Таким образом, обратный осмос обеспечивает гораздо более высокую степень очистки, чем большинство традиционных методов фильтрации, основанных на фильтрации механических частиц и адсорбции ряда веществ с помощью активированного угля.

Примечание

В системах обратного осмоса бытового назначения давление входной воды на мембрану соответствует давлению воды в трубопроводе. В случае, если давление возрастает, поток воды через мембрану также возрастает.

На практике, мембрана не полностью задерживает растворенные в воде вещества. Они проникают через мембрану, но в ничтожно малых количествах. Поэтому очищенная вода все-таки содержит незначительное количество растворенных веществ. Важно, что повышение давления на входе не приводит к росту содержания солей в воде после мембраны. Наоборот, большее давление воды не только увеличивает производительность мембраны, но и улучшает качество очистки. Другими словами, чем выше давление воды на мембране, тем больше чистой воды лучшего качества можно получить.

В процессе очищения воды концентрация солей со стороны входа возрастает, из-за чего мембрана может засориться и перестать работать. Для предотвращения этого вдоль мембраны создается принудительный поток воды, смывающий "рассол" в дренаж.

Эффективность процесса обратного осмоса в отношении различных примесей и растворенных веществ зависит от ряда факторов. Давление, температура, уровень рН, материал, из которого изготовлена мембрана, и химический состав входной воды, влияют на эффективность работы систем обратного осмоса.

Неорганические вещества очень хорошо отделяются обратноосмотической мембраной. В зависимости от типа применяемой мембраны (ацетатцеллюлозная или тонкопленочная композитная) степень очистки составляет по большинству неорганических элементов 85%-98%.

Мембрана обратного осмоса также удаляет из воды и органические вещества . Органические вещества с молекулярным весом более 100-200 удаляются полностью; а с меньшим - могут проникать через мембрану в незначительных количествах. Большой размер вирусов и бактерий практически исключает вероятность их проникновения через мембрану.

В то же время, мембрана пропускает растворенные в воде кислород и другие газы, определяющие ее вкус. В результате, на выходе системы обратного осмоса получается свежая, вкусная, настолько чистая вода, что она, строго говоря, даже не требует кипячения.

Подробнее ознакомиться с системами обратного осмоса вы можете здесь.

sochi.water.ru

Обратный осмос — WiKi

Схема процесса обратного осмоса

Обратный осмос — процесс, в котором, при определённом давлении, растворитель (обычно вода) проходит через полупроницаемую мембрану из более концентрированного в менее концентрированный раствор, то есть в обратном для осмоса направлении. При этом мембрана пропускает растворитель, но не пропускает некоторые растворённые в нём вещества.

Обратный осмос используют с 1970-х годов при очистке воды, получении питьевой воды из морской воды, получении особо чистой воды для медицины, промышленности и других нужд. С помощью обратного осмоса также можно производить концентраты соков без нагрева.

Применение

Обратный осмос относится к наиболее перспективным и широко применяемым методам очистки и подготовки воды. Установка обратного осмоса способна удалять из воды частицы с размерами 0,001-0,0001 мкм. В этот диапазон попадают соли жёсткости, сульфаты, нитраты, ионы натрия, малые молекулы, красители. Для более эффективной работы рекомендуется применение предварительных ступеней очистки (механическая очистка и микро-, ультра- или нанофильтрация), удаляющих более крупные частицы.[1]

Опреснение морской воды

  Схема установки опреснения на основе обратного осмоса.1: Приток морской воды,2: Поток пресной воды (40 %),3: Поток солёного концентрата (60 %),4: Поток морской воды (60 %),5: Концентрат (слив),A: Насос высокого давления,B: Циркуляционный насос,C: Осмотический модуль с мембраной,D: Устройство обмена давлением

Для получения пресной воды из морской требуется давление, превышающее создаваемое морской водой осмотическое давление[2]. Эта величина достаточно высока — существующие установки развивают давление, в 20 раз превышающее давление обычного бытового водопровода[3].

Мембраны, используемые для обратного осмоса, очень чувствительны к загрязнению, для чего механический фильтр для защиты мембраны обязателен. Многие растворённые в воде вещества задерживаются и не проходят через мембрану. Для преодоления осмотического давления на мембране воду подают под давлением около 2…17 атм для фильтрации и опреснения питьевой и солоноватой воды, и 24…70 атм для морской воды[4].

В системах очистки воды обычно используются синтетические полупроницаемые мембраны. Мембрана задерживает высокомолекулярные загрязнители, но пропускает низкомолекулярные вещества, например такие газы, как кислород, хлор, углекислый газ и пр. Некоторые газы могут определять вкус воды. Очищенная вода может иметь слабокислую реакцию (pH < 7) из-за наличия растворённого углекислого газа.

Свойство практически полностью очищать воду от всех примесей лишает её важных микроэлементов (если они в ней были до опреснения). Поэтому добавление необходимых солей в опреснённую воду — следующий шаг в производстве качественной питьевой воды. Вода же для технических нужд, например для полива и мойки, может быть сразу получена на более простых и дешевых мембранах удалением лишь 95 % солей.

В отличие от перегонки, в процессе обратного осмоса вода практически не нагревается, затраты энергии только на работу насоса, однако насос при работе не только перекачивает воду (малая доля энергозатрат), но и преодолевает высокое осмотическое давление (основные энергозатраты). По оценке норвежских специалистов объединение опреснительных установок обратного осмоса и электростанций, использующих осмос, выглядит многообещающе[4].

Очистка сточных вод

Технология очистки сточных вод с применением обратного осмоса принципиально изменилась — на последней стадии просто «отжимают» чистую воду от солей. Лидером технологий является на 2012 Сингапур, там запущена система NEWater. Сточные воды города после очистки возвращаются в оборот как питьевая вода, которая получила более высокую оценку от ВОЗ и USEPA, чем другие источники воды в Сингапуре[5].

Практически все современные морские суда, нуждающиеся в больших объёмах пресной воды, которые нерационально и просто невозможно брать на борт, имеют опреснительные установки. Например, круизные лайнеры имеют на борту тысячи пассажиров, несколько бассейнов и производят огромное количество сточных вод. Установки на основе обратного осмоса на борту и опресняют воду, и очищают стоки. Например, на Allure of the Seas и Oasis of the Seas сточные воды и вовсе направляются на вторичное использование[6].

Пищевая промышленность

Обратный осмос — более экономичный процесс для повышения концентраций пищевых жидкостей, например фруктовых соков, чем термические процессы. Преимущество заключаются в низкой стоимости эксплуатации и возможности избежать термической обработки, что делает процесс пригодным для термочувствительных веществ, таких как белки и ферменты, в большинстве пищевых продуктов. Обратный осмос широко используется в молочной промышленности для производства порошков сывороточного белка и для концентрации молока — уменьшаются транспортные расходы.

Медицина

Главной особенностью фильтров, в которых используется технология обратного осмоса, является практически полная стерилизация воды. Через фильтр проходит молекула воды (размер 0,3 нм), но не проходит большая часть химических примесей и включений биологического происхождения, в частности микроорганизмов и вирусов (размеры от 20 до 500 нм). Например, фильтр может задержать бактерии холеры или вирусы гепатита.

По мнению специалистов ВОЗ, потенциальные последствия микробного заражения питьевой воды для здоровья таковы, что борьба с ним должна всегда иметь первостепенное значение и никогда не должна ставиться под угрозу[7].

Влияние на здоровье человека воды, подготовленной с использованием технологии обратного осмоса

Достоинства и недостатки результата подготовки питьевой воды при помощи технологии обратного осмоса определяются особенностями технологии и целями фильтрации, которые зависят в первую очередь от изначального качества воды.

Свойство практически полностью очищать воду от всех примесей трактуется и как достоинство, и как недостаток. Единого мнения на этот счет нет. Сторонники первого подхода считают, что вода выполняет в организме только функцию растворителя, поэтому должна быть максимально чистой. Другие же полагают, что в воде в обязательном порядке должны быть микроэлементы.[8].

ВОЗ не установила рекомендуемого уровня минерализации питьевой воды, но по органолептическим показаниям рекомендует предел общей минерализации питьевой воды в 1000 мг/л, а вода с содержанием солей менее 200 миллиграммов на один литр уже считается слабоминерализированной[9].

Техническая реализация

  Бытовая система обратного осмоса

Промышленная установка обратноосмотического опреснения включает обычно следующее оборудование: фильтр тонкой очистки воды, система реагентной подготовки, насос высокого давления, блок фильтрующих модулей, датчики и приборы управления[10].

Основной элемент установки обратного осмоса — полупроницаемая обратноосмотическая мембрана, помещённая в корпус. В неё поступает исходная вода, а отводится два потока — очищенная и обессоленная, которая называется пермеатом, и вода с концентрированными примесями, называемая концентратом, которая сливается. Продавливание воды через мембрану ведётся при высоком давлении, которое создает насос, обычно центробежный многоступенчатый или роторный. Для замедления образования нежелательных отложений на мембранах применяется дозирование ингибитора осадкообразования. Для снятия осадков с поверхности мембран используется система химпромывки. Для контроля качества очистки и pH — проточные измерители солесодержания и рН-метры. Для контроля расхода пермеата и концентрата — проточные расходомеры. Управление системой обратного осмоса можно осуществлять в полуавтоматическом и автоматическом режиме. Проверить качество работы обратноосмотической мембраны можно TDS-метром.

Обратный осмос относится к группе баромембранных технологий. Движущей силой процесса является разница давлений по обе стороны полупроницаемой пористой мембраны.

Сквозь поры материала происходит фильтрование. В составе отфильтрованного потока присутствуют молекулы воды, низкомолекулярные соединения и ионы, меньшие по размерам, чем молекулы воды. Все остальные компоненты раствора, как механические (отдельные молекулы, вирусы), так и растворённые (ионы металлов, соли), задерживаются.[11]

Примером бытовой очистки воды мембраной обратного осмоса может служить фильтр, имеющий 3 картриджа — грубой (механической) очистки, мембрану обратного осмоса, фильтр угольный. Такие фильтры получили широкое применение в Америке, Европе и Азии. Интересны также последние модели компактных фильтров обратного осмоса, имеющих ряд нововведений, а именно: автоматический клапан отключения воды при обнаружении утечек, насос-повыситель, сменные фильтры с быстроразъёмными фитингами[12].

В среднем мембрана обратного осмоса очищает воду на молекулярном уровне 10−9 м (1 нм).[13]

См. также

Примечания

Ссылки

  • Обратный осмос — Определение термина " обратный осмос " (Российское мембранное общество)

ru-wiki.org


.