Как переделать энергосберегающую лампу в блок питания. Драйвер для светодиода из энергосберегающей лампы. Схема драйвера энергосберегающей лампы


Драйвер для светодиодов из энергосберегающей лампы.

Приобрел себе на пробу светодиоды 10 Вт 900лм теплого белого света на AliExpress. Цена в ноябре 2015года составляла 23 рубля за штуку. Заказ пришел в стандартном пакетике, проверил все исправные. Для питания светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе. Но так как драйверы для них(заказывал тоже на AliExpreess) были еще в пути решил запитать от балласта от энергосберегающих ламп. У меня было несколько таких неисправных ламп. у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода. Разбираем люминисцентную лампу.

Для переделки я взял 20 Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 20 Вт. Для 10 Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником. Установил перемычки в цепи розжига лампы.

На дроссель намотал 18 витков эмальпровода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 9,7В. Подключил светодиод через амперметр, который показал проходящий через светодиод ток в 0,83А. У моего светодиода рабочий ток равен 900мА, но я уменьшил ток чтобы увеличить ресурс. Собрал диодный мост на плате навесным способом.

Схема переделки.

Светодиод установил на термопасту на металлический абажур старой настольной лампы.

Плату питания и диодный мост установил в корпус настольной лампы.

При работе около часа температура светодиода 40 градусов.

На глаз освещенность как от 100 ваттной лампы накаливания.

Эта светодиодная настольная лампа работает уже около месяца. Пока все нормально а дальше время покажет. В результате я получил бесплатный драйвер для светодиодов. Когда придут заводские драйвера сравню их работу с самоделкой. Кому интересно можно посмотреть на видео. www.youtube.com/watch?v=Glfcvr0iUYw

mysku.ru

Драйвер для светодиодов из энергосберегающей лампы

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Прогресс не стоит на месте и на смену энергосберегающим люминесцентным лампам приходят светодиодные источники света. Имея большую экономичность, они превосходят энергосберегающие лампы по экологичности, поскольку люминесцентные лампы содержат ядовитую ртуть, а светодиоды абсолютно безопасны (подробнее о вреде светодиодных ламп).

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Использование платы питания энергосберегающей лампы в качестве драйвера для светодиодовИспользование платы питания энергосберегающей лампы в качестве драйвера для светодиодов

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока, по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:

Примитивный источник питания для светодиодов от сети 220В Примитивный источник питания для светодиодов от сети 220В

На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор

Схема с гасящим конденсаторомСхема с гасящим конденсатором

Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654h345WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.

Драйвер питания с минимальной доработкойПеределка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Советы и предостережения

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампПодключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов-энергосберегающая люминисцентная лампа;-отвертка;-паяльник;-тестер;-светодиод белого свечения 10вт;-эмальпровод диаметром 0,4мм;-термопаста;-диоды марки HER, FR, UF на 1-2А-настольная лампа.

Шаг первый. Разборка лампы.Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампШаг второй. Переделка электронного преобразователя.Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе. Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампБесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампБесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампПоверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампШаг третий. Сборка светодиодной настольной лампы.Патрон для лампы на 220 вольт убираем. Светодиод мощностью 10Вт установил на термопасту на металлический абажур старой настольной лампы. Абажур настольной лампы служит теплоотводом для светодиода. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампЭлектронную плату питания и диодный мост разместил в корпусе подставки настольной лампы. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампЗа час работы измерил температуру нагрева светодиода и она показала 40 градусов Цельсия. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампПо моим ощущениям освещенность от светодиода примерно соответствует лампе накаливания на 100 ватт . Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих лампЭта переделанная настольная лампа на светодиоде работает уже полгода. Нареканий нет, меня устраивает. В общем результате получился драйвер для светодиодов бесплатно и из бросовых материалов. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Как сделать блок питания на 12 В из энергосберегающей лампы

Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).

И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.

В чем разница между ИБП и электронным балластом

Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя. Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы. Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.

Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.

Пример распространённой схемы балласта ККЛ

Пример распространенной схемы балласта КЛЛ

Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:

  • разборку корпуса балласта КЛЛ. Это можно сделать отверткой, которую надо поочередно, шаг за шагом вставлять по линии соприкосновения его деталей. Прилагаемое к лампе усилие не должно быть чрезмерным для колбы. Надо постараться давить на нее с минимальной силой. Как открыть корпус балласта ККЛ

    Как открыть корпус балласта КЛЛ

  • Отсоединение контактов лампы от платы балласта. Для этого их жилки отматываются с четырех штырьков на плате. Отсоединение контактов колбы

    Отсоединение контактов колбы

  • Извлечение платы и соединение всех четырех штырьков перемычками (шунтирование лампы).
Плата балласта извлечена из лампы

Плата балласта извлечена из лампы

Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.

Удаление ленты стягивающей половинки сердечника

Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.

Рассоединяем склеенные половины сердечника

Рассоединяем склеенные половины сердечника

Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.

Разобранный дроссель

Разобранный дроссель

Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и драйвер для светодиодов из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.

Готовая к тестированию плата с выпрямителем

Готовая к тестированию плата с выпрямителем

Схема импульсного блока питания

Схема импульсного блока питания

Тестирование ИБП

Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.

Последовательное соединение платы с лампочкой перед подачей напряжения 220 В

Последовательное соединение платы с лампочкой перед подачей напряжения 220 В

Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.

Более мощный ИБП с отдельным трансформатором

Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.

Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.

ИБП с дополнительным трансформатором

ИБП с дополнительным трансформатором

Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.

Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.

На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. Энергосберегающие лампочки можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.

lampagid.ru

Как сделать блок питания из энергосберегающих ламп

Энергосберегающие лампы широко применяются в быту и на производстве, со временем они приходят в негодность, а между тем многие из них после несложного ремонта можно восстановить. Если вышел из строя сам светильник, то из электронной «начинки» можно сделать довольно мощный блок питания на любое нужное напряжение.

Как выглядит блок питания из энергосберегающей лампы

В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать такой можно, используя вышедшую из строя энергосберегающую лампу. В лампах чаще всего выходят из строя светильники, а блок питания остается в рабочем состоянии.

Для того чтобы сделать блок питания, необходимо разобраться в принципе работы электроники, содержащейся в энергосберегающей лампе.

Достоинства импульсных блоков питания

В последние годы наметилась явная тенденция к уходу от классических трансформаторных блоков питания к импульсным. Это связано, в первую очередь, с большими недостатками трансформаторных блоков питания, таких как большая масса, малая перегрузочная способность, малый КПД.

Устранение этих недостатков в импульсных блоках питания, а также развитие элементной базы позволило широко использовать эти узлы питания для устройств с мощностью от единиц ватт до многих киловатт.

Схема блока питания

Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как в любом другом устройстве, например, в компьютере или телевизоре.

В общих чертах работу импульсного блока питания можно описать следующим образом:

  • Переменный сетевой ток преобразуется в постоянный без изменения его напряжения, т.е. 220 В.
  • Широтно-импульсный преобразователь на транзисторах превращает постоянное напряжение в прямоугольные импульсы, с частотой от 20 до 40 кГц (в зависимости от модели лампы).
  • Это напряжение через дроссель подается на светильник.

Рассмотрим схему и порядок работы импульсного блока питания лампы (рисунок ниже) более подробно.

Схема электронного балласта энергосберегающей лампы

Сетевое напряжение поступает на мостовой выпрямитель(VD1-VD4) через ограничительный резистор R0 небольшого сопротивления, далее выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (С0), и через сглаживающий фильтр (L0) подается на транзисторный преобразователь.

Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превысит порог открытия динистора VD2. Это запустит в работу генератор на транзисторах VT1 и VT2, благодаря чему возникает автогенерация на частоте около 20 кГц.

Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль, облегчая запуск генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.

А резисторы R5 и R6 служат как ограничительные в цепях баз транзисторов, R3 и R4 предохраняют их от насыщения, а в случае пробоя играют роль предохранителей.

Диоды VD7, VD6 – защитные, хотя во многих транзисторах, предназначенных для работы в подобных устройствах, такие диоды встроены.

TV1 – трансформатор, с его обмоток TV1-1 и TV1-2, напряжение обратной связи с выхода генератора подается в базовые цепи транзисторов, создавая тем самым условия для работы генератора.

На рисунке выше красным цветом выделены детали, подлежащие удалению при переделке блока, точки А–А` нужно соединить перемычкой.

Переделка блока

Перед тем как приступить к переделке блока питания, следует определиться с тем, какую мощность тока необходимо иметь на выходе, от этого будет зависеть глубина модернизации. Так, если требуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему. Если необходимо получить мощность 50 и более ватт, то модернизация потребуется более основательная.

Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное. Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.

Определяем мощность

Мощность можно вычислить по формуле:

P=I*U, где

Р – мощность, Вт;

I – сила тока, А;

U – напряжение, В.

Например, возьмем блок питания со следующими параметрами: напряжение – 12 В, сила тока – 2 А, тогда мощность будет:

Р=2*12=24 Вт

С учетом перегрузки можно принять 24-26 Вт, так что для изготовления такого блока потребуется минимальное вмешательство в схему энергосберегающей лампы мощностью 25 Вт.

Новые детали

Добавление новых деталей в схему

Добавляемые детали выделены красным цветом, это:

  • диодный мост VD14-VD17;
  • два конденсатора С9, С10;
  • дополнительная обмотка, размещенная на балластном дросселе L5, количество витков подбирается опытным путем.

Добавляемая обмотка на дроссель играет еще одну немаловажную роль разделительного трансформатора, предохраняя от попадания сетевого напряжения на выход блока питания.

Чтобы определить необходимое количество витков в добавляемой обмотке, следует проделать следующие действия:

  1. на дроссель наматывают временную обмотку, примерно 10 витков любого провода;
  2. соединяют с нагрузочным сопротивлением, мощностью не менее 30 Вт и сопротивлением примерно 5-6 Ом;
  3. включают в сеть, замеряют напряжение на нагрузочном сопротивлении;
  4. полученное значение делят на количество витков, узнают, сколько вольт приходится на 1 виток;
  5. вычисляют необходимое число витков для постоянной обмотки.

Более детальный расчет приведен ниже.

При испытательных включениях рекомендуется применять схему, которая предохранит от выхода из строя блока питания, ее схематичное изображение приведено на рисунке ниже.

Испытательное включение переделанного блока питания

После этого легко вычислить необходимое число витков. Для этого напряжение, которое планируется получить от этого блока, делят на напряжение одного витка, получается количество витков, к полученному результату добавляют про запас примерно 5-10%.

W=Uвых/Uвит, где

W – количество витков;

Uвых – требуемое выходное напряжение блока питания;

Uвит – напряжение на один виток.

Намотка дополнительной обмотки на штатный дроссель

Оригинальная обмотка дросселя находится под напряжением сети! При намотке поверх нее дополнительной обмотки необходимо предусмотреть межобмоточную изоляцию, особенно если наматывается провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно применить ленту из политетрафторэтилена для уплотнения резьбовых соединений, которой пользуются сантехники, ее толщина всего 0,2 мм.

Мощность в таком блоке ограничена габаритной мощностью используемого трансформатора и допустимым током транзисторов.

Блок питания повышенной мощности

Для этого потребуется более сложная модернизация:

  • дополнительный трансформатор на ферритовом кольце;
  • замена транзисторов;
  • установка транзисторов на радиаторы;
  • увеличение емкости некоторых конденсаторов.

В результате такой модернизации получают блок питания мощностью до 100 Вт, при выходном напряжении 12 В. Он способен обеспечить ток 8-9 ампер. Этого достаточно для питания, например, шуруповерта средней мощности.

Схема модернизированного блока питания приведена на рисунке ниже.

Блок питания мощностью 100 Вт

Как видно на схеме, резистор R0 заменен на более мощный (3-ваттный), его сопротивление уменьшено до 5 Ом. Его можно заменить на два 2-ваттных по 10 Ом, соединив их параллельно. Далее, С0 – его емкость увеличена до 100 мкф, с рабочим напряжением 350 В. Если нежелательно увеличивать габариты блока питания, то можно подыскать миниатюрный конденсатор такой емкости, в частности, его можно взять из фотоаппарата-мыльницы.

Для обеспечения надежной работы блока полезно несколько уменьшить номиналы резисторов R5 и R6, до 18–15 Ом, а также увеличить мощность резисторов R7, R8 и R3, R4. Если частота генерации окажется невысокой, то следует увеличить номиналы конденсаторов C­3 и C4 – 68n.

Импульсный трансформатор

Самым сложным может оказаться изготовление трансформатора. Для этой цели в импульсных блоках чаще всего используют ферритовые кольца соответствующих размеров и магнитной проницаемости.

Расчет таких трансформаторов довольно сложен, но в интернете есть много программ, с помощью которых это очень легко сделать, например, «Программа расчета импульсного трансформатора Lite-CalcIT».

Как выглядит импульсный трансформатор

Расчет, проведенный с помощью этой программы, дал следующие результаты:

Для сердечника используется ферритовое кольцо, его внешний диаметр – 40, внутренний – 22, а толщина – 20 мм. Первичная обмотка проводом ПЭЛ – 0,85 мм2 имеет 63 витка, а две вторичных тем же проводом – 12.

Вторичную обмотку необходимо наматывать сразу в два провода, при этом их желательно предварительно слегка скрутить между собой по всей длине, так как эти трансформаторы очень чувствительны к несимметричности обмоток. Если не соблюдать это условие, то диоды VD14 и VD15 будут нагреваться неравномерно, а это еще больше увеличит несимметричность что, в конце концов, выведет их из строя.

Зато такие трансформаторы легко прощают значительные ошибки при расчете количества витков, до 30%.

Транзисторы

Так как эта схема изначально рассчитывалась для работы с лампой мощностью 20 Вт, то установлены транзисторы 13003. На рисунке ниже позиция (1) – транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как на позиции (2). Возможно, их придется установить на металлическую пластину (радиатор), площадью около 30 см2.

Замена транзисторов

Испытание

Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:

  1. Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
  2. К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
  3. Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.

Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.

Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 600С, то их придется установить на радиаторы.

В качестве радиатора можно использовать как заводской радиатор, что будет наиболее верным решением, так и алюминиевую пластину, толщиной не менее 4 мм и площадью 30 кв.см. Под транзисторы необходимо подложить слюдяную прокладку, крепить их к радиатору нужно с помощью винтов с изолирующими втулками и шайбами.

Блок из лампы. Видео

О том, как сделать импульсный блок питания из эконом лампы, видео ниже.

Импульсный блок питания из балласта энергосберегающей лампы можно сделать своими руками, имея минимальные навыки работы с паяльником.

Оцените статью:

elquanta.ru

Как переделать энергосберегающую лампу в блок питания. Драйвер для светодиода из энергосберегающей лампы

Драйвер для светодиода из энергосберегающей лампы легко можно сделать за час, если есть желание.

Если у Вас завалялась старая энергосберегающая лампа, а электронный балласт в ней рабочий, то из него довольно просто можно сделать своими руками драйвер для питания светодиодов. У Вас возникнет вопрос, а как проверить работоспособность балласта? При разборке лампы нужно самой лампы при помощи мультиметра и, если хоть одна из них горелая, то очень велика вероятность того, что балласт находится в рабочем состоянии, а если обе спирали целые, то наверняка есть неисправность в деталях балласта и её нужно устранять.

Если всё валяется в разобранном состоянии, то нужно просто очень внимательно осмотреть все детали балласта и дорожки печатной платы на предмет повреждений. На то, что детали потемневшие не обращайте внимания, просто они работают в очень жёстких температурных условиях. Если всё в порядке, то можно приступать к сборке драйвера для светодиодов. Проверять все детали балласта не имеет смысла, так как Вы затратите очень много времени на выпаивание и проверку деталей. Гораздо быстрее будет собрать схему для питания светодиодов от энергосберегающей лампы и с её помощью проверить работоспособность балласта.

Начинать нужно с припайки перемычек из проводков, как на фотографии и выпаивания дросселя. На дроссель нужно намотать дополнительную обмотку из медного провода.

После того как Вы выпаяли дроссель, его нужно разобрать (разъединить магнитопровод), для того чтобы легко намотать провод. Первым делом осторожно снимаем клейкую ленту с поверхности магнитопровода и отлаживаем её в сторонку, так как она нам ещё понадобится для обратной сборки. Осторожно пробуем руками разъединить половинки магнитопровода (он очень хрупкий и легко ломается, так что не прилагайте больших усилий). Если не получается, то осматриваем все поверхности и, если есть потёки лака, которые приклеили магнитопровод к катушке, то подрезаем и удаляем их простым канцелярским ножом. Не получилось разъединить? Не беда. Дальше нагреваем магнитопровод в местах соединения при помощи паяльника, строительного фена или простой зажигалки (только осторожнее, не повредите намотанный провод). При нагревании лак размягчается и разъединить магнитопровод будет легче. Получится обязательно.

Дальше на катушку нужно уложить слой электрической изоляции. Провод, который намотан на катушке работает под напряжением сети и, если не изолировать его от будущей обмотки, то велика вероятность проникновения напряжения сети в цепь питания светодиодов, что является угрозой для Вашей жизни. Изоляцию можно взять от старых дросселей, трансформаторов, катушек индуктивности, так же как и провод для намотки дополнительной обмотки. Можно использовать даже бумагу.

Наматываем дополнительную обмотку. Диаметр обмоточного провода нужно подобрать исходя из количества витков, нужных для получения необходимого напряжения и свободного окна в магнитопроводе. Диаметр провода нужен максимально возможный (какой влезет). Чем толще провод, тем большую мощность можно получить. У меня светодиодные сборки 24-36 вольт при токе 280-300 миллиампер и я намотал 30 витков провода диаметром 0.35. Влезло с трудом при плотной намотке, а напряжение получилось 28 вольт. Выходит примерно 1 вольт на виток.

Собираем дроссель и припаиваем его на место. Для питания светодиодов нужен постоянный ток, а у нас получается импульсный. Значит нужен выпрямитель и если Вы не хотите его собирать, то можно взять готовый, например из старого блока питания, как у меня. Обращаю Ваше внимание на то, что получившийся блок питания без нагрузки, в данном случае светодиод, включать нельзя, сгорит.

Схема собрана и осталось только испытать.

При замере тока светодиода получилось 290 миллиампер при напряжении 26 вольт. Идеально. Но транзисторы в балласте греются. Конечно не страшно (они к этому привычные), но лучше их заменить на более мощные или поставить на радиаторы, если светодиод будет работать в длительном режиме. Надеюсь теперь Вы сами сможете сделать блок питания из энергосберегающих ламп для светодиода. Получившееся устройство можно применить для переделки старых светильников в светодиодные, если всё сделать аккуратно. Я специально делал всё грубо для наглядности и быстроты исполнения.

Удачи Вам.

С развитием новейших технологий на полках специальных магазинов появилось множество осветительных приборов, каждый из которых отличается индивидуальными характеристиками яркости, экономичности и комфорта для глаз.

Изготовление светодиодной лампы из энергосберегающей без пайки

Много лет изготов

jtcase.ru

Ремонт энергосберегающей лампы Sylvania своими руками

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В одной из своих статей я рассказывал Вам, что для внутреннего освещения распределительных устройств (РУ) подстанций в основном мы применяем трубчатые и компактные люминесцентные лампы (КЛЛ).

Про их преимущества и недостатки читайте здесь.

В этой статье я расскажу Вам, как произвести ремонт компактной люминесцентной лампы Sylvania Mini-Lynx Economy мощностью 20 (Вт) производства Китай.

Данная лампа проработала на подстанции около 1,5 лет. Если режим ее работы перевести в часы, то получится в среднем около 2000 часов, вместо 6000 часов, заявленных производителем.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_2

Идея с ремонтом люминесцентных ламп возникла тогда, когда мне на глаза попалась очередная коробка со сгоревшими лампами, которые планировали утилизировать. Подстанций много, объем ламп большой, соответственно, и сгоревшие лампы регулярно накапливаются.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_3

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_1

Напомню Вам, что в люминесцентных лампах содержится ртуть, поэтому выбрасывать их с бытовым мусором не допустимо.

И вот я решил, по мере свободного времени, попытаться отремонтировать вышедшие из строя лампы, а заодно и поделиться с Вами информацией по их ремонту. Данную статью Вы можете использовать в своих интересах, ведь цены на КЛЛ лампы в настоящее время все еще относительно высокие, а значит и их ремонт все еще актуален.

Для начала приведу основные характеристики ремонтируемой лампы Sylvania Mini-Lynx Economy:

  • мощность 20 (Вт)
  • цоколь Е27
  • напряжение сети 220-240 (В)
  • тип лампы — 3U
  • световой поток 1100 (Лм)

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_4

 

Ремонт энергосберегающей лампы своими руками

С помощью плоской отвертки с широким жалом нужно аккуратно отстегнуть защелки корпуса в местах соединения двух его половинок. Для этого вставляем отвертку в паз и поворачиваем ее в ту или иную сторону, чтобы отщелкнуть первую защелку.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_5

Как только первая защелка откроется, продолжаем вскрывать остальные по периметру корпуса.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_6

Будьте аккуратны, иначе при разборке можно сколоть корпус лампы или, не дай Бог, разбить саму колбу, тогда придется проводить димеркуризацию помещения из-за наличия в колбе паров ртути.

Компактная люминесцентная лампа состоит из трех частей:

  • 3 U-образные дуговые колбы
  • электронная плата (ЭПРА)
  • цоколь Е27

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_20

Круглая печатная плата — это и есть плата электронного пускорегулирующего устройства (ЭПРА), или другими словами электронный баласт. Рабочая частота ЭПРА составляет от 10 до 60 (кГц). В связи с этим устраняется стробоскопический эффект «моргания» (значительно уменьшается коэффициент пульсаций ламп), который присутствует у люминесцентных ламп, собранных на электромагнитных ПРА (на основе дросселя и стартера) и работающих на частоте сети 50 (Гц).

Кстати, скоро мне принесут попользоваться прибор для измерения коэффициента пульсаций. Произведем замер и сравним коэффициенты пульсаций у лампы накаливания, у люминесцентной лампы с ЭПРА и с ЭмПРА, и у светодиодной лампы.

Подписывайтесь на новости сайта, чтобы не пропустить новые статьи.

Питающие провода от цоколя очень короткие, поэтому не дергайте резко, а то можно их оторвать.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_8

В первую очередь нужно проверить целостность нитей накаливания. В данной энергосберегающей лампе их две. Они обозначены на плате, как А1-А2 и В1-В2. Их выводы намотаны на проволочные штыри в несколько витков без применения пайки.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_14

С помощью мультиметра проверим сопротивление каждой нити.

Кто забыл, читайте подробное руководство о том, как пользоваться мультиметром (часть 1, часть 2 и часть 3).

Нить А1-А2.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_10

Нить накала А1-А2 имеет обрыв.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_9

Нить В1-В2.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_11

Вторая нить В1-В2 имеет сопротивление 9 (Ом).

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_12

В принципе, перегоревшую нить можно определить визуально по затемненным участкам стекла на колбе. Но все равно без измерения сопротивления не обойтись.

Сгоревшую нить накаливания А1-А2 можно зашунтировать резистором с номиналом, аналогичным исправной нити, т.е. порядка 9-10 (Ом). Я установлю резистор сопротивлением 10 (Ом) мощностью 1 (Вт). Этого вполне хватит.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_13

Впаиваю резистор с обратной стороны платы на выводы А1-А2. Вот, что получилось.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_16

Между резистором и платой нужно установить прокладку (на фото ее пока нет). Теперь нужно проверить лампу на работоспособность.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_17

Лампа горит. Теперь можно собрать корпус и продолжать ее эксплуатировать.

При таком ремонте запуск люминесцентной лампы будет происходить с некоторым мерцанием (порядка 2-3 секунд) - подтверждение тому смотрите в видео.

 

Неисправности, встречающиеся при ремонте ламп

Если нити накаливания в лампе исправны, то можно переходить к поиску неисправностей в электронной плате (ЭПРА). Визуально оцениваем ее состояние на наличие механических повреждений, сколов, трещин, сгоревших элементов и т.п. Также не забываем проверить качество пайки — это же китайское изделие.

В моем примере на вид плата чистая, трещин, сколов и сгоревших элементов не наблюдается.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_15

Вот наиболее распространенная схема ЭПРА, которая используется в большинстве компактных люминесцентных лампах (КЛЛ). У каждого производителя есть свои небольшие отличия (разброс параметров элементов схемы в зависимости от мощности лампы), но общий принцип схемы остается тот же.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_19

Выйти из строя могут следующие элементы платы:

  • ограничительный резистор
  • диодный мост
  • сглаживающий конденсатор
  • транзисторы, резисторы и диоды
  • высоковольтный конденсатор
  • динистор

А теперь поговорим о каждом элементе подробнее.

1. Ограничительный резистор

В схеме указан предохранитель FU, но зачастую он просто отсутствует, как в моем примере.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_23

Его роль выполняет входной ограничительный резистор. При возникновении какой-либо неисправности в лампе (ток короткого или перегруз) ток в цепи растет и резистор сгорает, тем самым разрывая цепь питания. Резистор усажен в термоусадочной трубке. Один его вывод соединен с резьбовым контактом цоколя, а второй - с платой.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_21

Я решил проверить этот резистор — он оказался целым, а значит можно сделать вывод, что короткого замыкания в цепи не было — произошел просто обрыв нити А1-А2. Сопротивление резистора составляет 6,3 (Ом).

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_22

Если у Вас резистор «не звонится», то в любом случае нужно искать причины по которым он сгорел (см. далее по тексту). При сгоревшем резисторе лампа гореть не будет.

2. Диодный мост

Диодный мост VD1-VD4 служит для выпрямления сетевого напряжения 220 (В). Выполнен он на 4 диодах марки 1N4007 HWD.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_24

Если диоды «пробиты», то соответственно, производим их замену. При пробое диодов ограничительный резистор, как правило, тоже сгорает, а лампа перестает гореть.

3. Сглаживающий конденсатор

Электролитический конденсатор С1 сглаживает пульсации выпрямленного напряжения.  Очень часто выходит из строя (теряет емкость и вздувается), особенно в китайских лампах, поэтому не лишним будет его проверить. При его неисправности лампа плохо включается и гудит.

На фотографии он зеленого цвета. Имеет емкость 4,7 (мкФ) напряжением 400 (В).

Кстати, это тот самый конденсатор, от которого мигает лампа, подключенная через выключатель с подсветкой.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_25

4. Транзисторы, резисторы и диоды

На двух транзисторах VT3 и VT4 собран высокочастотный генератор (импульсный преобразователь). В качестве транзисторов применяются высоковольтные кремниевые транзисторы серий MJE13003 и MJE13001. Для моей 20-Ваттной лампы установлено два транзистора серии MJE13003 ТО-126.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_26

Чтобы проверить транзисторы, их нужно выпаивать из схемы, т.к. между их переходами подключены диоды, резисторы и низкоомные обмотки тороидального трансформатора, что ложно отразится при измерении мультиметром. Зачастую выходят из строя резисторы R3 и R4 в цепи базы транзисторов — их номинал около 20-22 (Ом).

5. Высоковольтный конденсатор

Если лампа сильно мерцает или светится в районе электродов, то скорее всего причиной тому является пробой высоковольтного конденсатора C5, подключенного между нитями накала. Этот конденсатор создает высоковольтный импульс для появления разряда в колбе. И если он пробит, то лампа не загорится, а в районе электродов будет наблюдаться свечение из-за разогрева спиралей (нитей накаливания). Кстати, это одна из распространенных неисправностей.

В моей лампе установлен конденсатор B472J 1200 (В). Если он вышел из строя, то его можно заменить на конденсатор с более высоким напряжением, например, 3,9 (нФ) 2000 (В).

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_27

6. Динистор

Динистор VS1 (по схеме DB3) выглядит как миниатюрный диод.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_28

При достижении между анодом и катодом напряжения около 30 (В) он открывается. С помощью мультиметра проверить динистор не возможно, только лишь его целостность — он не должен «звониться» ни в одном направлении.  Из строя выходит гораздо реже, нежели предыдущие элементы. У маломощных ламп динистор обычно отсутствует.

7.  Тороидальный трансформатор

Тороидальный трансформатор Т1 имеет кольцевой магнитопровод, на котором намотаны 3 обмотки. Количество витков каждой обмотки находится в пределах от 2 до 10. Практически не выходит из строя.

remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_29

Хотел бы отметить то, что лампа Sylvania имеет холодный запуск, т.к. у нее в схеме отсутствует позистор РТС (терморезистор с положительным коэффициентом).

 remont_energosberegayushhej_lampy_ремонт_энергосберегающей_лампы_sylvania_30

Это значит, что при включении лампы ток подается на холодные нити накала (спирали), что отрицательно сказывается на их сроке службы, т.к. они предварительно не прогреваются и при холодном запуске перегорают от скачка тока (аналогично, как у ламп накаливания). А у нас ведь как раз сгорела одна из нитей накала (А1-А2) и это является хорошим тому подтверждением.

При установленном позисторе РТС, ток последовательно проходит через позистор РТС и нити накала, тем самым плавно их разогревая. Затем сопротивление позистора РТС увеличивается, переставая шунтировать лампу, что приводит к резонансу напряжений на конденсаторе С5 и электродах лампы. Высокое напряжение пробивает газ в колбе и лампа зажигается. Это и называется горячим запуском лампы, что положительно сказывается на сроке службы нитей накала.

Почему же выходят из строя электронные компоненты платы?

Причин на самом деле может быть несколько: использование бракованных элементов, низкое качество изготовления, неправильная эксплуатация (частые включения, пониженная или повышенная температура). Как видите, среди вышедших из строя ламп имеются, как китайские производители, так и известные брендовые, типа Osram и Philips. Тут, уж, кому как повезет.

Если у Вас сгорели сразу две нити накала, а электронная плата ЭПРА осталась исправной, то ее можно использовать для питания обычной трубчатой люминесцентной лампы, тем самым избавившись от схемы дросселя со стартером, и уменьшив ее коэффициент пульсаций.

P.S. Уважаемые читатели и гости сайта «Заметки электрика», у кого из Вас имеется опыт по ремонту энергосберегающих ламп, то буду рад, если поделитесь в комментариях своими наблюдениями. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru