КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА. Кпд котла это


КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА - это... Что такое КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА?

 КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА

(Boiler efficiency) — отношение количества теплоты, переданной воде котла для превращения ее в пар при сжигании 1 кг топлива, к величине теплотворной способности топлива, т. е. количеству тепла, которое выделяется при полном сжигании 1 кг топлива. К. П. Д. котлов достигает величины порядка 0,60—0,85.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР, 1941

.

  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ВИНТА
  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ МАШИНЫ

Смотреть что такое "КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ КОТЛА" в других словарях:

  • коэффициент полезного действия котла — 3.9 коэффициент полезного действия котла ηK: Отношение теплопроизводительности Q к теплопотреблению QB: Источник …   Словарь-справочник терминов нормативно-технической документации

  • коэффициент полезного действия — 3.1 коэффициент полезного действия : Величина, характеризующая совершенство процессов превращения, преобразования или передачи энергии, являющаяся отношением полезной энергии к подведенной. [ГОСТ Р 51387, приложение А] Источник …   Словарь-справочник терминов нормативно-технической документации

  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — отношение полезно затрачиваемой работы или получаемой энергии ко всей затраченной работе или соответственно потребляемой энергии. Напр., К. п. д. электродвигателя отношение механ. мощности, им отдаваемой, к подводимой к нему электр. мощности; К.… …   Технический железнодорожный словарь

  • Коэффициент полезного действия — Запрос «КПД» перенаправляется сюда; см. также другие значения. Коэффициент полезного действия (КПД)  характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно… …   Википедия

  • коэффициент полезного действия h — 3.7 коэффициент полезного действия h , %: Отношение полезной выходной мощности к подводимой теплоте. Источник …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 54442-2011: Котлы отопительные. Часть 3. Газовые котлы центрального отопления. Агрегат, состоящий из корпуса котла и горелки с принудительной подачей воздуха. Требования к теплотехническим испытаниям — Терминология ГОСТ Р 54442 2011: Котлы отопительные. Часть 3. Газовые котлы центрального отопления. Агрегат, состоящий из корпуса котла и горелки с принудительной подачей воздуха. Требования к теплотехническим испытаниям оригинал документа: 3.10… …   Словарь-справочник терминов нормативно-технической документации

  • Паровоз ФД — «Феликс Дзержинский» Паровоз ФД21 3125 Основные данные …   Википедия

  • ФД — Феликс Дзержинский …   Википедия

  • ГОСТ Р 54440-2011: Котлы отопительные. Часть 1. Отопительные котлы с горелками с принудительной подачей воздуха. Терминология, общие требования, испытания и маркировка — Терминология ГОСТ Р 54440 2011: Котлы отопительные. Часть 1. Отопительные котлы с горелками с принудительной подачей воздуха. Терминология, общие требования, испытания и маркировка оригинал документа: 3.11 аэродинамическое сопротивление газового… …   Словарь-справочник терминов нормативно-технической документации

  • Электродный котёл — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

dic.academic.ru

Определение КПД котла брутто и нетто

⇐ ПредыдущаяСтр 10 из 10

 

Коэффициент полезного действия котла брутто характеризует эффективность использования поступившей в котел теплоты и не учитывает затрат электрической энергии на привод дутьевых вентиляторов, дымососов, питательных насосов и другого оборудования. При работе на газе

 

hбрк = 100 × Q1/ Qcн. (11.1)

 

Затраты энергии на собственные нужды котельной установки учитываются КПД котла нетто

 

hнк = hбрк – qт – qэ , (11.2)

 

где qт, qэ – относительные расходы на собственные нужды теплоты и электроэнергии, соответственно. К расходам теплоты на собственные нужды относят потери теплоты с продувкой, на обдувку экранов, распыливание мазута и т.д.

Основными среди них являются потери теплоты с продувкой

 

qт = Gпр × (hк.в – hп.в) / (В × Qcн) .

 

Относительный расход электроэнергии на собственные нужды

 

qэл = 100 × (Nп.н/hп.н+ Nд.в/hд.в+ Nд.с/hд.с)/(B × Qcн) ,

 

где Nп.н, Nд.в, Nд.с – расходы электрической энергии на привод питательных насосов, дутьевых вентиляторов и дымососов, соответственно; hп.н, hд.в, hд.с - КПД питательных насосов, дутьевых вентиляторов и дымососов соответственно.

 

11.3. Методика выполнения лабораторной работы и обработки результатов

 

Балансовые испытания в лабораторной работе проводятся для стационарного режима работы котла при выполнении следующих обязательных условий:

- продолжительность работы котельной установки от растопки до начала испытаний – не менее 36 ч,

- продолжительность выдерживания испытательной нагрузки непосредственно перед испытанием – 3 ч,

- допустимые колебания нагрузки в перерыве между двумя соседними опытами не должны превышать ±10%.

Измерение величин параметров производятся с помощью штатных приборов, установленных на щите котла. Все измерения должны производиться одновременно не менее 3-х раз с интервалом 15-20 мин. Если результаты двух одноименных опытов различаются не более, чем на ±5%, то в качестве результата измерения берется их среднее арифметическое. При большем относительном расхождении используется результат измерения в третьем, контрольном опыте.

Результаты измерений и расчетов записывают в протокол, форма которого приведена в табл. 26.

 

 

Таблица 26

Определение потерь теплоты котлом

 

Наименование параметра Обозн. Ед. измер. Результаты в опытах
№1 №2 №3 Среднее
Объем дымовых газов м3/м3        
Средняя объемная теплоемкость дымовых газов Cг¢ кДж/ (м3·К)        
Температура дымовых газов J °С        
Потеря теплоты с уходящими газами Q2 МДж/м3        
Объем 3-атомных газов VRO2 м3/м3        
Теоретический объем азота V°N2 м3/м3        
Избыток кислорода в уходящих газах aуг ---        
Объем воздуха теоретический V°в м3/м3        
Объем сухих газов Vсг м3/м3        
Объем окиси углерода в уходящих газах CO %        
Теплота сгорания СО QСО МДж/м3        
Объем водорода в уходящих газах Н2 %        
Теплота сгорания Н2 QН2 МДж/м3        
Объем метана в уходящих газах Ch5 %        
Теплота сгорания СН4 QCh5 МДж/м3        
Потеря теплоты от химической неполноты сгорания Q3 МДж/м3        
Потеря теплоты от наружного охлаждения q5 %        
Потеря теплоты от наружного охлаждения Q5 МДж/м3        

Окончание табл. 26

Низшая теплота сгорания сухого газа Qсн МДж/м3        
Полезно использованная теплота (по методу обратного баланса) Q1 МДж/м3        

Таблица 27

КПД котла брутто и нетто

 

Наименование параметра Обозн. Ед. измер. Результаты в опытах
№1 №2 №3 Среднее
Расход эл. энергии на привод питательных насосов Nп.н          
Расход эл. энергии на привод дутьевых вентиляторов Nд.в          
Расход эл. энергии на привод дымососов Nд.с          
КПД питательных насосов hпн          
КПД дутьевых вентиляторов hдв          
КПД дымососов hдм          
Относительный расход эл. энергии на собственные нужды qэл          
КПД котла нетто hнетток %        

 

Анализ результатов лабораторной работы

Полученное в результате выполнения работы значение hбрк по методу прямого и обратного балансов необходимо сравнить с паспортной величиной, равной 92,1%.

Анализируя влияние на КПД котла величины потерь теплоты с уходящими газами Q2 , необходимо отметить, что повышение КПД может быть обеспечено снижением температуры уходящих газов и уменьшением избытка воздуха в котле. Вместе с тем, снижение температуры газов до температуры точки росы приведет к конденсации водяных паров и низкотемпературной коррозии поверхностей нагрева. Снижение величины коэффициента избытка воздуха в топке может привести к недожогу топлива и увеличению потерь Q3. Поэтому температура и избыток воздуха должны быть не ниже некоторых значений.

Затем необходимо проанализировать влияние на экономичность работы котла его нагрузки, с ростом которой увеличиваются потери с уходящими газами и снижаются потери Q3 и Q5.

В отчете по лабораторной работе должно быть сделано заключение об уровне экономичности котла.

 

Контрольные вопросы

 

  1. По каким показателям работы котла может быть сделано заключение об экономичности его работы?
  2. Что такое тепловой баланс котла? Какими методами он может составляться?
  3. Что понимается под КПД котла брутто и нетто?
  4. Какие потери теплоты увеличиваются при работе котла?
  5. Каким образом можно увеличить q2?
  6. Какие параметры оказывают существенное влияние на величину КПД котла?

Ключевые слова:тепловой баланс котла, КПД котла брутто и нетто, коррозия поверхностей нагрева, коэффициент избытка воздуха, нагрузка котла, потери теплоты, уходящие газы, химическая неполнота сгорания топлива, экономичность работы котла.

 

ЗАКЛЮЧЕНИЕ

 

В процессе выполнения лабораторного практикума по курсу котельных установок и парогенераторов студенты знакомятся с методами определения теплоты сгорания жидкого топлива, влажности, выхода летучих и зольности твердого топлива, конструкцией парового котла ДЕ-10-14ГМ и экспериментальным путём исследуют происходящие в нём тепловые процессы.

Будущие специалисты изучают методики испытаний котельного оборудования и получают необходимые практические навыки, необходимые при определении тепловых характеристик топки, составлении теплового баланса котла, измерении его КПД, а также составлении солевого баланса котла и определении величины оптимальной продувки.

Библиографический список

 

1. Хлебников В.А. Испытания оборудования котельной установки: Лабораторный практикум. - Йошкар-Ола: МарГТУ, 2005.

2. Сидельковский Л.Н., Юренев В.Н. Котельные установки промышленных предприятий: Учебник для вузов. – М.: Энергоатомиздат, 1988.

3. Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. - М.: Энергоатомиздат, 1991.

4. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. Рек. Гос. службой стандартных справочных данных. ГСССД Р-776-98. – М.: Изд-во МЭИ, 1999.

5. Липов Ю.М., Третьяков Ю.М. Котельные установки и парогенераторы. – Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2005.

6. Липов Ю.М., Самойлов Ю.Ф., Третьяков Ю.М., Смирнов О.К. Испытания оборудования котельного отделения ТЭЦ МЭИ. Лабораторный практикум: Учебное пособие по курсу «Котельные установки и парогенераторы». – М.: Изд-во МЭИ, 2000.

7. Роддатис К.Ф., Полтарецкий А.Н. Справочник по котельным установкам малой производительности/Под ред. К.Ф.Роддатиса. – М.: Энергоатомиздат, 1989.

8. Янкелевич В.И. Наладка газомазутных промышленных котельных. – М.: Энергоатомиздат, 1988.

9. Лабораторные работы по курсам «Теплогенерирующие процессы и установки», «Котельные установки промышленных предприятий»/ Сост. Л.М.Любимова, Л.Н.Сидельковский, Д.Л.Славин, Б.А.Соколов и др./ Под ред. Л.Н.Сидельковского. – М.: Изд-во МЭИ, 1998.

10. Тепловой расчет котельных агрегатов (Нормативный метод)/Под ред. Н.В.Кузнецова. – М.:Энергия, 1973.

11. СНиП 2.04.14-88. Котельные установки/Госстрой России. – М.: ЦИТП Госстроя России, 1988.

Учебное издание

ХЛЕБНИКОВ Валерий Алексеевич

КОТЕЛЬНЫЕ УСТАНОВКИ И ПАРОГЕНЕРАТОРЫ

 

Лабораторный практикум

 

 

Редактор А.С. Емельянова

Компьютерный набор В.В.Хлебников

Компьютерная верстка В.В.Хлебников

 

 

Подписано в печать 16.02.08. Формат 60х84/16.

Бумага офсетная. Печать офсетная.

Усл.п.л. 4,4. Уч.изд.л. 3,5. Тираж 80 экз.

Заказ № 3793. С – 32

 

 

Марийский государственный технический университет

424000 Йошкар-Ола, пл. Ленина, 3

 

Редакционно-издательский центр

Марийского государственного технического университета

424006 Йошкар-Ола, ул. Панфилова, 17

 

[1] В 2020 г. планируется выработать 1720-1820 млн. Гкал.

[2] Миллиграмм-эквивалентом называется количество вещества в миллиграммах, численно равное отношению его молекулярной массы к валентности в данном соединении.

Читайте также:

lektsia.com

Тепловая мощность котла и КПД.

Что такое тепловая мощность?

Тепловая мощность водогрейного котла, это количество теплоты которое передаётся теплоносителю (воде) в процессе сгорания топлива в котле. Тепловая мощность измеряется в гигакаллориях(ГКал/час) или мегаваттах (МВт/час). 1 ГКал/час — это 40 кубометров воды (40 м3/час), нагретые на 25 градусов Цельсия(25С) за один час. 1 ГКал = 1.16 МВт.

Пиролизный котел 30 кВтЧто такое КПД котла?

Коэффициент полезного действия водогрейного котла(КПД), это разность между количеством теплоты которое содержится в топливе и количеством теплоты, которое передано теплоносителю(воде)

Как посчитать тепловую мощность.Формулу для расчёта тепловой мощности в гКал/час можно представить в виде:Q = (T1 — T2) * 40(м3/час) / 1000, где T1 – Т2 – разность температур в градусах Цельсия.

Таким образом, для того чтобы посчитать мощность, которую выдаёт котельная, необходимо расход воды умножить на разность температур (перепад между «подачей» и «обраткой» ) и разделить на 1000. У Вас получится мощность в гигакаллориях (ГКал).

Пример 1:

Температура воды на «подаче» (из котельной в тепловую сеть) – 55С

Температура воды на «обратке» (из тепловой сети в котельную) – 43С

Расход сетевой воды – 120 м3/час (по насосам)

(55 — 43) * 120 / 1000 = 1.44 ГКал. * 1.16 = 1.67 МВт

Пример 2:

Температура воды на входе в котёл – 43С

Температура на выходе из котла – 51С

Расход воды в котле – 40 м3/час

(51 — 43) * 40 / 1000 = 0.32 ГКал * 1.16 = 0.37 МВт

Как посчитать КПД котла?

Формулу для расчёта КПД котла можно представить в виде:

КПД = 100 – q2-q3-q4-q5-q6, где q2…q6 – тепловые потери котла.Для того чтобы посчитать КПД – котла необходимо температуру уходящих газов котла (измеряется термометром на газоходе котла) разделить на 15 ( с понижением температуры уходящих газов на 12-15С, потери теплоты уменьшаются на 1%), прибавить 2 (потери с химическим недожогом в слоевой топке 0,5-3%), прибавить 3 (потери с механическим недожогом в слоевой топке 1-5%), прибавить 2 (сумма остальных потерь). Полученное значение — ориентировочная величина потерь КПД в процентах, вне зависимости от вида топлива и мощности котла.

Пример 3:

Температура уходящих газов котла – 320С

320 / 15 + 2 + 3 + 2 = 29,3% — суммарные потери КПД (q2…q6)

100 – 29,3 = 70,1% — КПД котла

Из чего складываются потери КПД котла.

Потери тепла с уходящими газами – q2 – составляют самую большую величину тепловых потерь котла. В современном котле величина потерь – q2 – находится в пределах 10 – 12%, при работе котла на номинальной нагрузке.

Потери тепла с химическим недожогом – q3 – возникает из-за неполного сгорания летучих компонентов топлива в топке котла. Причинами появления химического недожога могут быть: плохое смесеобразование, общий недостаток воздуха, низкая температура в топочном объёме котла, особенно в зоне догорания(верхняя часть топочного объёма). При достаточном коэффициенте избытка воздуха и хорошем смесеобразовании, химический недожог – зависит от теплонапряжения в топочном объёме (объём топки / мощность котла). В современном котле со слоевой топкой, при значениях теплонапряжения – qv = 0.23 — 0.45 МВт/м3, химический недожог составляет 0.5 – 2%, при увеличении qv (с 0.45 до 0.7), химический недожог резко возрастает и достигает 5%.

Потери тепла с механическим недожогом – q4 – сумма потерь теплоты с уносом, шлаком и провалом. Для слоевых топок величина потерь с уносом зависит от теплонапряжения(читай выдаваемая мощность) в топочном объёме (МВт) отнесённого к площади зеркала горения (qv / площадь решётки = qr ). С увеличением qr (т.е. с форсировкой котла), резко увеличивается доля несгоревшего топлива уносимого с продуктами сгорания (потери с уносом). Так, с увеличением qr с 0.93 до 1.63 (в 1.7 раза) величина потерь с уносом возрастает с 3 до 21% (в 7 раз). Потери теплоты со шлаком, возрастают, с увеличением зольности топлива и ростом теплонапряжения. Потери теплоты с провалом зависят от спекаемости топлива, содержания в топлива мелочи и от конструкции колосниковой решётки. При использовании охлаждаемой уголковой решётки потери теплоты с провалом не превышают 0.5%. В современном котле со слоевой топкой потери тепла с механическим недожогом – q4 — составляют 1-5%.

Потери тепла от наружного охлаждения – q5 – наблюдаются в связи с тем, что температура наружной поверхности котла всегда выше температуры окружающей среды. Котёл в лёгкой обмуровке имеет величину потерь – q5 – в пределах 0.5%

Прочие потери тепла – q6 – сумма потерь с физической теплотой шлака, на охлаждение панелей и балок, не включённых в циркуляционную систему котла – как правило, не превышают 0.5-2%

teplavdome.net

Коэффициент полезного действия котла

Коэффициент полезного действия котла

Коэффициентом полезного действия (КПД) парового или водогрейного котла называют отношение полезной теплоты к располагаемой теплоте. Не вся полезная теплота, лучку поверхностей нагрева и т. д., а электрическая энергия - для привода дымососа, вентилятора, питателей топлива, мельниц системы пылеприготовления и т. д. Под расходом на собственные нужды понимают расход всех видов энергии на производство пара или горячей воды. Поэтому различают коэффициент полезного действия котла агрегата брутто и нетто. Если коэффициент полезного действия агрегата определяется по выработанной теплоте, то его называют брутто, а если по отпущенной теплоте - нетто. Разность между выработанной и отпущенной теплотой представляет собой расход на собственные нужды. Коэффициент полезного действия брутто агрегата характеризует степень его технического совершенства, а коэффициент полезного действия нетто - коммерческую экономичность.

Коэффициент полезного действия брутто котельного агрегата (%) можно определить по уравнению прямого баланса:

или по уравнению обратного баланса, если известны все потери:

Определение коэффициент полезного действия по уравнению прямого баланса применяется преимущественно при отчетности за длительный промежуток времени (декада, месяц), а по уравнению обратного баланса - при испытании котельных агрегатов. Определение коэффициент полезного действия по обратному балансу значительно точнее, так как погрешности при измерении потерь тепла меньше, чем при определении расхода топлива, особенно при сжигании твердого топлива.

Приведенные данные показывают, что для повышения рентабельности парогенератора и водогрейного котла недостаточно стремиться к снижению тепловых потерь; необходимо также всемерно сокращать расход тепловой и электрической энергии па собственные нужды. Поэтому сравнение экономичности работы различных котельных агрегатов в конечном счете следует производить по их коэффициент полезного действия нетто.

toplivopodacha.ru

Некоторые аспекты определения КПД котельных агрегатов при проведении энергетического обследования источника тепловой энергии

Журнал Теплоэнергоэффективные технологии Некоторые аспекты определения КПД котельных агрегатов при проведении энергетического обследования источника тепловой энергии. Н.Д. Денисов-Винский, В.А. Афанасьев Журнал "Теплоэнергоэффективные технологии".№1-2 (65 - 66) | Июнь, 2012 год | стр. 64 - 67 | УДК 643.82.621.182

   статья

   Задачей энергетического обследования котельной является определение эффективности использования топливно-энергетических ресурсов (ТЭР) при осуществлении основного технологического процесса – выработки тепловой энергии посредством сжигания органического топлива (здесь и далее будет рассматриваться наиболее распространенное топливо для котельных в России – природный газ). Для проведения анализа и последующего определения эффективности использования ТЭР составляется энергетический баланс котельной для каждого вида энергетического ресурса. 

   Любой энергетический баланс (энергобаланс) состоит из приходной и расходной частей. Приходная часть энергобаланса содержит количественный перечень энергии, поступающей посредством различных энергоносителей (природный газ, вода, воздух, электрическая энергия). Расходная часть энергобаланса определяет расход энергии всех видов во всевозможных её проявлениях: потери при преобразовании энергии одного вида в другой, при её транспортировке, а также при преобразовании её в энергию, накапливаемую в специальных устройствах. При этом приходная и расходная часть энергобаланса должны быть равны. Таким образом, энергетический баланс показывает соответствие, с одной стороны, суммарной подведённой энергии и, с другой стороны, суммарной полезно используемой энергии и её потерями.

   Суммарной подведённой энергии является теплота сгорания использованного топлива – Q сг.т. Суммарной полезной используемой энергией – тепловая энергия, отпущенная в тепловую сеть – Q отп.ТС. Потери тепловой энергии в котельной можно разбить на две группы: потери в котлоагрегатах при выработке тепловой энергии, и затраты на собственные нужды котельной – Q пот.КА и Q СН. Тогда уравнение теплового баланса в котельной в математическом виде может быть записано в виде уравнения:

Формула №1

   где 

Q сг.т. - тепловая энергия сгоревшего топлива;

Q отп.ТС. - тепловая энергия, отпущенная в тепловую сеть;

Q пот.КА. - тепловые потери в котлоагрегатах;

Q СН - тепловая энергия на собственные нужды.

   Для оценки эффективности работы любой технической системы используется обобщённый физический показатель – коэффициент полезного действия (КПД) системы, физический смысл которого есть отношение величины полученной полезной работы (энергии) к затраченной работе (энергии). Так, применительно к котельной: полезная энергия – тепловая энергия, отпущенная в тепловую сеть – Q отп.ТС, затраченная энергия – теплота сгоревшего топлива – Q сг.т. Тогда коэффициент полезного действия котельной – η кот можно вычислить, используя выражение:

Формула №2

   В настоящее время на каждой котельной, использующей в качестве топлива природный газ, установлены счётчики расхода – расходомеры потребляемого газа и теплосчётчики для определения величины отпускаемой тепловой энергии в сеть. Таким образом, Q отп.ТС определяется в результате прямого измерения тепловой энергии теплоносителя посредством применения теплосчётчика. Величина теплоты сгоревшего топлива может быть определена косвенным путём – через теплотворную способность топлива Qн и его расход – объём использованного топлива Bт:

Формула №3

   Таким образом, вычислить среднее значение η кот для наперёд заданного периода времени: сутки, месяц, отопительный период, год при организации соответствующего учёта показаний используемых приборов не составляет труда. Коэффициент полезного действия котельной полностью определяют две величины – коэффициент полезного действия котлоагрегата и затраты энергии на собственные нужды. Наглядно это можно показать, преобразовав выражение (1). Разделим все его части на величину Q сг.т. Получим:

Формула №4

   При учёте соответствующих обозначений получаем выражение:

Формула №6

   где

η кот - КПД котельной;

К пот.КА - коэффициент потерь котлоагрегатов;

К СН - коэффициент затрат тепла на собственные нужды.

   Таким образом, для определения КПД котельной достаточно определить величину потерь в котлоагрегатах и количество тепла, которое идёт на собственные нужды. Однако вычисление потерь в котлоагрегатах представляет определённые трудности. Уравнение теплового баланса котлоагрегата имеет вид:

Формула №8

   где

Q выр. - тепловая энергия, выработанная котлоагрегатами;

Q пот.КА - тепловые потери в котлоагрегатах.

   Разделив обе части уравнения (8) на Q сг.т. - теплоту сгоревшего топлива и сделав преобразования, получим следующее выражение:

Формула №9

   Из уравнения 9 следует, что коэффициент потерь в котлоагрегатах и КПД котлоагрегатов однозначно взаимосвязаны. Вычислив один показатель, мы вычисляем и второй.

   Основным документом, определяющим порядок эксплуатации котлоагрегата является режимная карта, которая составляется организацией, имеющей на то полномочия, после проведения режимно-наладочных испытаний. В соответствии с «Правилами эксплуатации теплоэнергетических установок» периодичность проведения таких испытаний для газовых котельных составляет 3 года. На рисунке №1 в качестве примера представлена режимная карта парового котла, установленного в одной из котельных, где проводилось энергетическое обследование.

Режимная карта котла ДКВр

Рисунок №1. Режимная карта котла ДКВр-6,5/13.

   В режимной карте котла приводятся значения основных параметров котлоагрегата для работы на различных уровнях мощности при максимальной эффективности. В процессе эксплуатации мощность котла (котельной) должна изменяться в соответствии с изменением температуры наружного воздуха. Изменять мощность котла можно путём изменения количества сжигаемого газа, т.е. изменяя расход газа. При изменении расхода газа также меняется и КПД котлоагрегата. Для того, чтобы определить КПД котлоагрегата при его работе на определённой мощности, а значит и с определённом расходом топлива, можно воспользоваться данными режимной карты. Для удобства следует найти функциональную зависимость между расходом топлива и КПД котлоагрегата. Зависимость для режимной карты котла ДКВр-6,5/13, изображённой на рисунке №1, изображена на рисунке 2. 

Зависимость КПД котла от расхода газа

Рисунок №2. Зависимость КПД котлоагрегата 

от расхода газа для котла ДКВр-6,5/13.

   Если организован периодический (с периодом, например, 1 час) учёт потребляемого газа, то вопрос определения K пот.КА и η КА решён.

   Приведённые рассуждения относятся к одному котлу. В котельной же устанавливается несколько котлоагрегатов, как минимум 2. Однако при этом в котельной устанавливается общий расходомер потребляемого природного газа. Возникает вопрос, как определить количество газа, потреблённого каждым котлом. При наличие расходомера для каждого котла (что бывает очень и очень редко) вопрос решается, как и для одного котла. 

   При наличии одного общего расходомера задача определения и для каждого котельного агрегата может быть решена при применении данных давления газа перед горелками котельного агрегата. Суть методики заключается в определении доли потребления природного газа каждым котлом за заданный промежуток времени согласно данным режимной карты и суточной ведомости котлов при их параллельной работе и последующим фактическим определением количества природного газа, потреблённым каждым котлов за тот же промежуток времени.  

Зависимость между давлением газа перед горелками и расходом топлива котла

Рисунок №3. Функциональная зависимость между давлением газа перед горелками

и расходом топлива котла.

   По данным, которые приведены в режимной карте котла, а именно давление газа перед горелками и расход природного газа для соответствующих режимов работы котла, необходимо найти функциональную зависимость. Она приведена на рисунке №3 и описывается следующим уравнением:

Функциональная зависимость

   Следующим шагом к определению доли потребления природного газа каждым котлом за заданный промежуток времени является вычисление среднего значения давления газа перед горелкой для каждого котла согласно суточным ведомостям работы котлов. 

   Рассмотрим суточные ведомости котельной, где установлены котлы, чья режимная карта приведена на рисунке №1. Здесь следует ввести основное ограничение описываемой методики, которое заключается в том, что все приведённые выводы справедливы для котлов, у которых режимные карты в первом приближении совпадают. В таблице №1 приведены данные из суточных ведомостей двух параллельно работающих котлов. 

Таблица №1. Данные из суточных ведомостей 

двух параллельно работающих котлов.

Pick14.jpg

   Среднее значение давления за указанный промежуток времени для первого котла составляет 73,9 кгс/м², для второго котла 86,9 кгс/м². Согласно этим величинам и уравнению 10 мы можем найти средний удельный расход природного газа через каждый котёл в единицу времени. Тогда для первого котла этот расход равен 551,27 м³/час, соответственно для второго – 598,3 м³/час. 

   После того, как был найден удельный расход природного газа через каждый котёл в период времени с 9:00 до 18:00, найдём, сколько всего природного газа было потреблено котлами за заданный промежуток времени – т.е. с 9:00 по 18:00. Для этого умножим соответствующие данные на количество часов – на 10 часов. Тогда получим для первого котла 5 512,7 м³, для второго котла 5 983 м³. По этим данным можно найти долевое потребление природного газа каждым котлом: 

Удельный расход природного газа

   Таким образом, согласно вычислениям, первый котёл за период времени от 9:00 до 18:00 потребил , а второй от всего природного газа, израсходованного котельной за заданный промежуток времени. Зная общее - фактическое (по счётчику) количество потреблённого природного газа котельной за заданный промежуток времени, можно найти, сколько фактически за этот промежуток времени потребил каждый котёл. Для данной котельной в период с 9:00 по 18:00 при работе двух котлов в параллельном режиме было потреблено 10 114 м³ природного газа. Тогда первый котёл потребил за этот промежуток времени 4 849,6 м³ природного газа, а второй котёл потребил 5 264,3 м³. Зная, какое количество теплоты было получено при работе каждого котла за заданный промежуток времени, а также зная теплотворную способность природного газа, можно определить КПД работы каждого котла за заданный промежуток времени. 

   Другой способ определения КПД работы котла можно определить по режимной карте. Для этого необходимо перейти к фактическому расходу природного газа через каждый котёл, разделив фактическое потребление каждого котла за заданный промежуток времени, на величину этого промежутка. Для первого котла получим 484,96 м³/час, для второго – 526,43 м³/час. На рисунке №2 дана зависимость между КПД котла и расходом природного газа согласно данным режимной карты. Таким образом для первого котла КПД в период с 9:00 по 18:00 равен 89,7%, а для второго котла 90,5%. 

   Для определения КПД работы котлов в параллельном режиме, необходимо учитывать долевое «участие» работы каждого котла при генерации тепловой энергии. Таким образом, общий КПД работы котлов равен 90,11%. Точность определения КПД работы котлов, как по отдельности, так и вместе, зависит, главным образом, от временного периода.

   После определения КПД работы котлов не составляет трудности определить коэффициент потерь в котлоагрегатах, а уже после затраты тепла на собственные нужды. Таким образом, составив тепловой баланс котельной для заданного промежутка времени можно определить эффективность использования топливно-энергетических ресурсов и в дальнейшем осуществлять энергосберегающие мероприятия.

© Н.Д. Денисов-Винский

Line

www.denisov-vinskiy.ru

КПД газового котла для дома

Тепловая эффективность отопительного оборудования обозначается в коэффициенте полезного действия. КПД газового котла всегда указано в техдокументации. Как заверяют производители, есть модели котельного оборудования с производительностью 107-108 %, другие функционируют с 93-97 % отдачи.

Для самостоятельного расчёта тепловой эффективности техники и каких-либо действий по увеличению КПД, необходимо осознавать, что подразумевают приведённые цифры.

Горение газового котла

Пламя газового котла

Подсчёт КПД газового котла отопления

Метод расчёта производительности осуществляется путём сравнения потраченной теплоэнергии на нагрев жидкости и фактического объёма всей теплоты, что была выделена в момент сжигания топлива. Вычисляется по такой формуле:

η = (Q/ Qобщ.)*100% η — читается как “эта”;Q1 — тепло, которое удалось аккумулировать и использовать для нагрева помещения;Qобщ. — общее количество тепловой энергии, которое выделяется при сжигании топлива.

Однако эта формула не берёт в учёт многие нюансы, например, возможные тепловые потери, отклонения в рабочих параметрах системы и прочее. Расчёты дают возможность узнать только средний КПД самого котла от газа. Многие изготавливающие компании указывают именно это значение.

Расчитать теплопотери дома или помещения можно с помощью подготовленного нами калькулятора.

Тут же оценивают погрешности определения тепловой эффективности. Используют такую формулу:

η=100 — (q2 + q3 + q4 + q5 + q6)

Расчёты помогают проанализировать в соответствии с особенностями определённой отопительной системы.

Обозначение Значение
q2 Тепловые потери в отходящих газах и продуктах сгорания
q3 Потери, связанные с неверными пропорциями газовоздушной смеси, по причине которых появляется недожог газа
q4 Тепловые потери, связанные с появлением на горелках и теплообменнике сажи, а также, механический недожог
q5 Теплопотери, в зависимости от наружной температуры
q6 Потери тепла при охлаждении топочной камеры во время очистки её от шлаков. Последний коэффициент относится только к твердотопливным устройствам, не учитывается при расчётах КПД оборудования, функционирующего на природном газе

Настоящий коэффициент полезного действия рассчитывают только на месте, в зависимости от правильно выполненной системы удаления дыма и качественного монтажа.

Больше всего на тепловую эффективность влияет температура отходящих газов, которая отмечена в формуле сокращением q2. Если интенсивность нагрева газов на 10-15 °С, то производительность повышается на 1-2 %. Поэтому наивысший КПД в конденсационных котлах, что относятся к низкотемпературной технике отопления.

Экономичный газовый котёл с высоким КПД

Как показывает практика, а также доказывает техдокументация, котлы зарубежных производителей имеют более высокий коэффициент полезного действия. Европейские организации акцентируют усилия на совершенствовании энергосберегающих технологий. Зарубежные котлы от газа характеризуются высокой производительностью, потому что их устройство подразумевает:

  1. Модуляционную горелку. Котлы популярных компаний отличаются двухступенчатыми либо модулируемыми горелками, которые могут похвастаться автоматической приспособляемостью к фактическим рабочим параметрам отопительной системы. Остатков на выходе минимальное количество.
  2. Нагрев жидкости. Хороший котёл – это оборудование, которое разогревает теплоноситель максимум до 70 °С, в то время как отходящие газы нагреваются не более 110 °С, это и даёт наилучшую тепловую отдачу. Однако при низкотемпературном нагреве жидкости присутствуют некоторые недостатки, такие как малая тяга и активное образование конденсата. Теплообменники в агрегатах от газа с высокой производительностью выполняются из качественной нержавейки и имеют особый конденсаторный блок, который необходим для отбора энергии от конденсата.
  3. Нагрев подводящего газа и воздуха, что поступает в горелочное устройство. Подключение агрегатов закрытого типа происходит коаксиальному дымоходу. Воздух циркулирует в камеру сжигания через наружную полость трубы с двумя полостями, до этого подогреваясь, что способствует снижению нужных тепловых затрат на пару процентов. Горелочные устройства с предварительным изготовлением газовоздушной смеси тоже осуществляют подогрев газа перед подачей его на горелку.
  4. Монтаж системы повторной циркуляции отходящих газов. В таком случае дым поступает не сразу в камеру сжигания, а циркулирует через дымоход, смешивается с чистым воздухом и оказывается опять в горелке.
Больше информации о конденсационных газовых котлах в этой статье.

Наивысший коэффициент полезного действия наблюдается при нагреве образования конденсата либо «точки росы». Агрегаты, функционирующие при низкотемпературном нагреве, называют конденсационными. Их отличие в небольшом количестве потребляемого газа и высокая тепловая эффективность, что очень видно при подсоединении к оборудованиям от баллонов с газом и газгольдеру.

Известно множество брендов конденсационных агрегатов, самыми популярными из них являются только некоторые. Газовые котлы с высоким КПД для дома вы можете выбрать из следующих марок:

  • Виссман;
  • Будерус;
  • Вайлант;
  • Бакси;
  • Де Дитрих.

Как увеличить КПД газового котла своими руками?

Повысить коэффициент полезного действия самостоятельно, без помощи специалиста, возможно. Для этого необходимо соблюдать следующие пункты:

  1. Настроить заслонку поддувала. Выполнить это можно путём эксперимента, установив, при какой позиции температура жидкости будет выше всего. Контроль осуществляется по термометру, который установлен в корпусе котла.
  2. Проследить, чтобы трубопровод не зарастал изнутри, не появлялась накипь и скапливалась грязь. С трубами из пластика в этом плане в настоящее время проще, качество их известно. И всё же мастера советуют время от времени продувать отопительную систему.
  3. Следить за качеством дымовой трубы. Смотреть, чтобы трубы не засорялись, а сажа не налипала на стенках. Любые образования способствуют сужению сечения трубы отвода и ослабеванию тяги котла.
  4. Обязательно своевременно чистить камеру сгорания. Понятно, что газ коптит не так, как уголь либо поленья, однако нужно минимум раз в несколько лет мыть топочную камеру и удалять сажу.
  5. Для повышения КПД газовых котлов стоит снижать тягу дымоходной трубы в сильные мороза. С этой целью можно применять ограничитель тяги, устанавливаемый на самом верхнем краю дымохода. Его функция – регулировать сечения самой трубы.
  6. Сделать ниже химические теплопотери. Тут варианта два для достижения лучшего значения: установка ограничителя тяги (говорилось об этом выше) и проведения сразу после монтажа котла от газа качественной настройки техники. Это рекомендуется доверить специализированному работнику.
  7. Ещё одним ответом, на вопрос, как повысить КПД газового котла, может служить следующее – установка турбулизатора. Это особые пластины, устанавливаемые между топочной камерой и теплообменником. Они делают площадь отбора теплоэнергии больше.

Это основной список, следуя ему, вы можете рассчитывать на повышение коэффициента полезного действия своего котельного оборудования. Безусловно, подобных возможностей не мало, но эти являются основными.

teplofan.ru

КПД газовых котлов отопления – выбор оптимального варианта

Использование газовых котлов это распространенный способ автономного отопления. Производители предлагают большое количество моделей, при выборе которых основное внимание уделяется мощности и цене устройства, но тенденции в развитии приборостроения уже направлены в сторону энергоэффективности, поэтому далеко не в последнюю очередь смотрят еще и на КПД. От него зависит, какое количество тепла прибор отопления сможет извлечь из единицы объема газа.

Маркетинговые уловки – по законам физики КПД не превышает 100%

Из чего складывается КПД

Чтобы понять, на чем реально выиграть (сэкономить), представляют алгоритм работы системы – на первый взгляд он прост. Когда в доме становится холодно, то включается система – насос прокачивает теплоноситель по трубам, в котле открывается подача газа и зажигается горелка, которая через теплообменник нагревает воду (или что использовано как теплоноситель). Когда в помещении становится тепло, то все выключается.

Выбирая оборудование отопления, держат эту схему в голове, чтобы понимать, какая комплектация нужна для максимального КПД системы.

Утепление окон и дверей

Этот шаг непосредственно не относится ни к котлам, ни к системе, но на результативность работы влияет напрямую. Если открыть помещение всем ветрам, то тепло в нем будет, только если сидеть с котлом в обнимку и про энергоэффективность можно забыть. Правильно же утепленное помещение оставит отданное радиаторами тепло внутри себя, котел не придется лишний раз запускать и газа израсходуется меньше.

Подготовка к зиме дома с установленным газовым прибором отопления ничем не отличается – это установка пластиковых окон, а если они уже есть, то перевод в зимний режим. В обычных оконных рамах щели затыкаются и проклеиваются лентой.

Все начинается с утепления

Вентиляция помещений

Отдельное внимание стоит уделять проверке вентиляции – от нее зависит, насколько хорошо в котел поступает воздух, и насколько меньше жильцам останется угарного газа. От первого зависит качество сгорания газа (что непосредственно влияет на КПД), а от второго здоровье владельцев котла.

Это справедливо для котлов с «внутренней» тягой, когда воздух в топку подается непосредственно из помещения, в котором установлен котел.

Во втором случае, когда воздух для горения берется с улицы, необходима регулярная чистка канала и заслонок, потому что КПД котлов отопления сбивается от недостатка и избытка поступающего кислорода. Да и если воздуховод полностью забьется, то хорошего от этого ничего не выйдет.

Работа датчиков тепла

Включать котел, когда холодно и выключать, когда жарко – не способствующая экономичности идея, так как часто получается, что запуск сделан раньше, а остановка позже, чем надо. Благо, в комплектацию современных моделей входят датчики тепла, которые отслеживают температуру в помещении. Когда она опускается до определенного предела, то котел отопления включается, а как воздух прогреется, то питание прерывается.

Уже само присутствие датчиков повышает КПД системы, а уменьшает его неправильная настройка устройств или же неверное их размещение.

Кроме слежения за температурой, есть датчики систем самоконтроля, следящих за состоянием котла — например, отключить подачу газа, если затухнет огонь в горелке.

Датчики различных типов

Пуск котла

Выполняется двумя способами:

  • Возле горелки постоянно горит отдельный огонек. Когда котел эксплуатируется, то открывается соответствующий кран и поджигается «зажигалка», от которой загорается поступающий в основную горелку во время работы котла газ. Зажигалка горит постоянно и хоть пламя небольшое, но за сезон пару кубов газа она таки сожжет.
  • Экономнее в плане КПД пьезозажигалка – когда в камеру сгорания поступает газ, она срабатывает, выдавая искру, достаточную для розжига пламени. Иногда первый вариант предпочтителен, но это зависит от индивидуальных особенностей размещения котла и привычек хозяев.

Сгорание газа

Этот процесс превращает входящий газ в тепло для нагревания теплоносителя. При правильно организованной вентиляции повлиять на эффективность процесса уже нельзя – все зависит от модели котла и горелки. Самые экономные (не сами по себе, а в связке с другими узлами котла отопления) это горелки цилиндрического типа. Чтобы понимать, как увеличить КПД, надо знать, куда расходуется энергия, полученная в результате сгорания газа:

  • Прогрев теплообменника, который нагревает теплоноситель.
  • Испарение воды непосредственно из камеры сгорания котла – она там появляется вследствие химической реакции горения.
  • Потери выбрасываемые «в трубу» — если на улицу выбрасываются нагретые продукты сгорания (тот же водяной пар), то это значит, что часть теплоты израсходована не по назначению.

Общая схема работы котла

Чем качественнее котел, тем большая часть полученной от сжигания энергии расходуется на первый пункт, а остальные сводятся к минимуму. В котлах отопления последних моделей значения КПД достигают 90-98%.

Теплообмен внутри системы

Горящий газ нагревает емкость с водой (теплоносителем), которая в свою очередь прогревает радиаторы. Последняя на КПД котла влияет только насколько быстро и без потерь энергия передастся теплоносителю. Самая удачная форма теплообменника для этого – цилиндрическая, внутри которого располагается такая же горелка. Теплоноситель двигается вокруг них по спирали, гарантированно успевая нагреться до необходимой температуры.

Материал теплообменника разный – от стали до чугуна и зависит от модели котла, каждая из которых рассчитывается по своему.

Принцип работы конденсационного котла на видео ниже:

Вывод продуктов горения

Последние внедренные способы экономии касаются этого пункта. Логика решения – если на выходе из дымохода температура продуктов сгорания была 200-250 °С, то почему не использовать их для подогрева теплоносителя? Для этого на пути отработанных газов устанавливают дополнительные теплообменники из стали или чугуна (с большой инерцией нагревания).

Дополнительно идет работа по извлечению теплоты из испаренной воды, полученной в результате реакции горения – это делают «конденсационные» котлы, которые ставят рекорды в плане КПД – температура выбрасываемых газов около 50 °С, а количество используемой по назначению теплоты достигает 98%.

Вконтакте

Facebook

Twitter

Одноклассники

kotlyhouse.ru


.