Большая Энциклопедия Нефти и Газа. Использование энергии воды


Энергия воды

 Вода – источник жизни на земле. Это одно из самых уникальных и удивительных явлений на нашей планете, обладающее множеством уникальных свойств, использование которых может быть очень выгодно и полезно для человека. Энергия воды, ровно как и энергия солнца или воздуха, является возобновляемым источником энергии, так необходимым в сложившихся условиях. Все прекрасно понимают, что внутренние Земные ресурсы не безграничны и рано или поздно они закончатся (причем, учитывая постоянно растущий «аппетит» человечества, это произойдет скорей рано, чем поздно). Поэтому проблема поиска альтернативных источников энергии так важна сегодня, а вода предлагает нам одно из решений этой проблемы. Итак, энергия воды, пожалуй, одна из первых энергий, которую люди научились использовать в своих целях. Вспомнить хотя бы первые речные мельницы. Принцип их работы прост и в то же время гениален: движущийся поток воды вращает колесо, преобразуя кинетическую энергию воды в механическую работу колеса. По сути все современные гидроэлектростанции работают именно так же. С одним важным дополнением: далее механическая энергия преобразуется в электрическую.

Энергию воды грубо можно разделить на три типа по ее виду, в котором она преобразовывается:      1. Энергия приливов/отливов. Вообще само явление отлива очень интересно и долгое время оно никак не могло быть объяснено. Большие массивные (и разумеется близкие к Земле) космические объекты, такие как Луна или Солнце, действием своей гравитации приводят к неравномерному распределению воды в океане, создавая «горбы» из воды. Из-за вращения земли начинается движение этих «горбов» и их перемещение к берегам. Но из-за того же вращения Земли, положение океана относительно Луны изменяется, уменьшая тем самым действие гравитации.      Во время прилива заполняются специальные резервуары, располагающиеся на береговой линии. Резервуары образуются благодаря дамбам. Во время отлива вода начинает свое обратное движение, которое и используется для вращения турбин и преобразования энергии. Важно, чтобы разница высот во время прилива и отлива была как можно больше, иначе подобная станция просто не сможет себя оправдывать. Поэтому приливные электростанции создаются, как правило, в узких местах, где высота приливов достигает хотя бы 10 метров. Например приливная станция во Франции в устье реки Ранее.Но такие станции имеют и свои минусы: создание дамбы приводит к увеличению амплитуды приливов со стороны океана, а это влечет за собой затопление суши соленой водой. Как следствие – изменение флоры и фауны биологической системы, причем не в самую лучшую сторону.      2. Энергия морских волн. Несмотря на то, что природа этой энергии весьма схожа с вышеописанной, ее все же принято выделять в отдельную ветвь. Данный вид энергии обладает довольно высокой удельной мощностью (приблизительная мощность волнения океанов достигает 15 кВт/м). Если высота волны будет около двух метров, то это значение может увеличиться до 80 кВт/м.  Разумеется, это идеализированные данные, потому что перевести всю энергию волнения в электрическую не удастся, но все же коэффициент преобразования довольно высок – 85%. На сегодняшний день использование энергии морских волн не особо распространено из-за ряда сложностей, возникающих при создании установок. Пока эта сфера находится только на стадии экспериментальных исследований.      3. Гидроэлектростанции. А этот вид энергии стал доступным для человека благодаря совместной «работе» трех стихий: воды, воздуха и, конечно же, солнца. Солнце испаряет с поверхности озер, морей и океанов воду, образуя облака. Ветер перемещает газообразную воду к возвышенным областям, где она конденсируется и, выпадая в виде осадков, начинает стекать обратно к своим первоисточникам. На пути этих потоков ставятся гидроэлектростанции, которые перехватывают энергию падающей воды и преобразуют ее в электрическую. Мощность, вырабатываемая станцией, зависит от высоты падения воды, поэтому на ГЭС стали создаваться дамбы. Они так же позволяют регулировать величину потока. Разумеется создание такого огромного сооружения стоит очень дорого, но ГЭС полностью себя окупает благодаря неисчерпаемости используемого ресурса и свободного доступа к нему.       У данного типа энергии, по аналогии с остальными, имеются как плюсы, так и минусы. Так же как в случае использования энергии приливов, создание ГЭС приводит к затоплению большой площади и нанесению непоправимого ущерба местной фауне. Но даже с учетом этого обстоятельства можно говорить о высокой экологичности ГЭС: они наносят только локальный ущерб, не загрязняя атмосферу Земли. В попытках уменьшить ущерб, наносимый станциями разрабатываются все более новые методы их работы, постоянно совершенствуется конструкция самих турбин. Одним из предложенных методов стало «накачивание» аккумуляторов. Вода, прошедшая через турбины не утекает дальше, а накапливается в больших резервуарах. Когда нагрузка на ГЭС становится минимальной, за счет энергии атомной или тепловой станции сохраненная вода перекачивается обратно вверх и все повторяется. Этот метод выигрывает как по экологическим, так и по экономическим показателям.Еще одну очень интересную область придумали эксперты Комиссии по атомной энергетике в Гренобле, Франция. Они предлагают использовать энергию падающего дождя! Каждая падающая капля обладает своим воздействием. Попадая на пьезокерамический элемент, она воздействует на него физически, что приводит к возникновению электрического потенциала. Далее электрический заряд видоизменяется (так же как в микрофонах электрических сигнал преобразуется в колебания). Благодаря многообразию своих форм, вода обладает поистине громадным энергетическим потенциалом.На сегодняшний день гидроэнергетика уже весьма развита и составляет 25% от мирового производства электроэнергии, а учитывая темпы ее развития можно смело говорить, что она является весьма перспективным направлением.

energy-source.ru

Энергия воды | Всё о воде

С давних времён люди, наблюдая за тем, как текут реки, с высоких гор ниспадают «локоны» водопадов, поняли, что можно использовать энергию воды в собственных целях.

Момент осознания этой возможности – стал переломным для цивилизации: на берегах рек и у водопадов стали строить мельницы, лесопилки и прочие технологические сооружения, которые в своей работе использовали силу водных потоков. С изобретением электричества, необходимость в строительства подобного рода сооружений именно у источников воды отпало – для привода в действие механизмов стали использовать энергию электрического тока.

Но её величество вода недолго оставалась в стороне: с быстро растущей потребностью в электроэнергии человек начал задумываться над тем, как получить это самое электричество при минимальных затратах. И вот в конце прошлого века, а точнее – в 80-е годы – началась эксплуатация гидроэлектростанций, преобразующих энергию воды в электрический ток. Конструкции гидроэлектростанций могут быть самыми разнообразными. К примеру малые гидроэлектростанции могут представлять из себя здания из металлоконструкций с установленным в них оборудованием разной мощности.

Среди многих методов получения электричества из энергии водных потоков преобладают два:

Первый из них использует такое явление, как океанские приливы. Процесс прилива объясняется воздействием гравитационного поля луны на огромные массы океанских вод. Действие приливов проявляется в повышении уровня воды в регионе, находящемся на минимальном расстоянии от ночного светила и повторяются с цикличностью 2 раза в сутки и привязаны к положению Луны и времени года. Влияние Солнца на океанские приливы – намного меньше из-за несоизмеримо большего расстояния его от земли по сравнению с Луной.

Высота подъёма уровня воды при приливах не превышает 0,5м. В тех же случаях, когда перемещение воды ограничены, волны могут достигать высоты 5-10м. Действие приливной энергии идёт на то, чтобы заполнит резервуар, образованный дамбой. Поток воды, образующийся при отливе, целесообразно использовать в качестве движущей силы, аналогично тому, как это происходит на гидроэлектростанциях. Мест, подходящих под строительство приливных электростанций, во всём мире не так уж и много. Для обоснованности строительства таких станций необходимо, чтобы разность уровней воды во время прилива и отлива достигала таких показателей, которые позволяли бы использовать образующуюся силу для преобразования в электроэнергию. Некоторые учёные говорят о возможности использования в этих же целей энергию океанских и морских волн. Но степень целесообразности данного предложения весьма смутна, в силу рассеянности данного вида энергии на большой  площади и практически невозможности её концентрации.

Кроме энергии приливов-отливов, течений и волн имеется также тепловая энергия океанов, которую, теоретически, возможно использовать на нужды человечества. По некоторым подсчётам при использовании приливов, можно получить 780 миллионов кВт электроэнергии. Под действием солнечных лучей вода из водоёмов испаряется, достигая определённой высоты, конденсируется и затем выпадает в виде дождя. Стекая с более высоких мест в низину, образовывает бурные потоки и водопады. На этом-то этапе и выгодно использование гидроэлектростанций, для преобразования  энергии воды в электрическую.

В отличие от первых гидростанций, которые использовали течение рек в их первозданном виде, современные ГЭС строятся на искусственных дамбах, позволяющих многократно увеличить энергетический потенциал реки, путём повышения высоты падения воды.

Прогресс не стоит на месте, и сегодня изобретены турбины, получать достаточное количество энергии при меньших отливах и приливах, чем ранее.

В качестве вывода хочется заметить, что доля энергии, вырабатываемой всеми ГЭС мира, на сегодняшний день составляет всего 20% от всего мирового энергетического запаса. В плане развития данной отрасли в наиболее выгодном положении находятся страны третьего мира.

sitewater.ru

Использование - энергия - вода

Использование - энергия - вода

Cтраница 1

Использование энергии воды на гидроэлектрических станциях опасно не только потому, что строительство плотин препятствует миграции рыбы, но и по другим причинам. Так, например, возведение Асуанской плотины, предотвратив имевшиеся ранее разливы Нила, снизило плодородие долины этой реки.  [1]

Использование энергии воды происходит в специальных двигателях ( гидравлических турбинах), которые устанавливают у гидротехнических сооружений. Гидротурбины приводят в движение электрический генератор, преобразующий механическую энергию в электрическую.  [2]

Обычно при использовании энергии наступающей воды эксплуатация скважин ведется с тем или иным ограничением отбора во избежание неравномерного продвижения контура воды. Тем не менее в процессе этого продвижения неизбежно наступает момент обводнения скважин, сначала близко расположенных к продвигающемуся контуру, а затем и находящихся в центре залежи. В такой обводненной залежи отдельные скважины могут перейти почти полностью: на воду, что, конечно, поведет к прекращению их эксплуатации, хотя нефть может оставаться еще в значительных количествах или.  [3]

Обычно при использовании энергии наступающей воды эксплоата-ция скважин ведется с тем или иным ограничением отбора во избежание преждевременного [ прорыва языков или конусов воды. Тем не менее в процессе продвижения воды неизбежно наступает период обводнения скважин, которое по мере их эксплоатации нет прзрывно усиливается. При наличии на площади нескольких рядов скважин, параллельных первоначальному контуру воды, обводнение будет постепенно захватывать все более и более удаленные от контура скважины, пока, наконец, вся или почти вся залежь не будет обводнена.  [4]

Работа элеватора основана на использовании энергии воды, вытекающей с высокой скоростью из сопла / для подсоса охлажденной воды из обратного трубопровода системы. Поток смешанной воды поступает в камеру 3, где происходит выравнивание скорости воды по сечению. За счет плавного снижения скорости в диффузоре 4 происходит повышение статического давления; в результате разности давлений в конце диффузора и в обратном трубопроводе обеспечивается циркуляция воды в системе отопления.  [6]

Были изобретены и сконструированы разнообразные водоподъемники с использованием энергии воды, ветра, животных и людей.  [7]

Такое устройство применяется на всех установках ( при промывке под давлением) для использования энергии дросселируемой воды. Этот принцип часто применяется и при дросселировании газов. Содержащую СО2 и h3S воду после дросселирования дегазируют в градирне.  [8]

Такое устройство применяется на всех установках ( при промывке пол давлением) для использования энергии дросселируемой воды. Этот принцип часто применяется и при дросселировании газов. Содержащую СО2 и h3S вод после дросселирования дегазируют в градирне.  [9]

В настоящее время механическую и электрическую энергию получают главным образом за счет сжигания различных топлив и использования энергии воды.  [10]

Этот, так сказать, пневматический вечный двигатель уникален по своей конструкции, хотя аналогичные двигатели, основанные на использовании энергии воды, предлагались многократно. В их основе был спиральный водяной подъемник - архимедов винт.  [11]

Первая волна ( 1785 - 1835 гг.) сформировала технологический уклад, основанный на новых технологиях в текстильной промышленности, использовании энергии воды.  [12]

Эти машины приводили к освобождению людей от выполнения функций двигателя путем использования энергии воды или ветра.  [13]

Несколько позднее появилась возможность сооружения электрических станций в местах залежей топлива ( торфа, угля, нефти) или местах использования энергии воды, в известной степени независимо от мест нахождения потребителей электрической энергии - городов и промышленных предприятий.  [14]

Кроме обычного конического цевочного зацепления, применяемого в различных схемах, появляется распределение от одного двигателя на два постава. Для привода жерновов начинают применять коленчатый вал. Расширяется использование энергии воды и ветра для технологических целей; ею пользуются для приготовления пива, подсолнечного масла, в токарных работах по дереву.  [15]

Страницы:      1    2

www.ngpedia.ru

Гидроэнергетика. Основные принципы использования энергии воды. Гидроэлектростанции. Энергия волн. Энергия приливов. Преобразование тепловой энергии океана в механическую

Значительно более высоким КПД обладают гидроэлектростанции (ГЭС) ввиду отсутствия на них термодинамического цикла (преобразо­вания тепловой энергии в механическую). На ГЭС используется энер­гия рек [15]. Путем сооружения плотины создается разность уровней воды. Вода, перетекая с верхнего уровня на нижний либо по специ­альным трубам – турбинным трубопроводам, либо по выполненным в теле плотины каналам, приобретает большую скорость. Струя воды поступает далее на лопасти гидротурбины. Ротор гидротурбины при­водится во вращение под воздействием центробежной силы струи воды. Таким образом, на ГЭС осуществляется преобразование:

Поэтому теоретически их КПД может достигать 90%. Кроме того, ГЭС являются маневренными станциями, время пуска их агрегатов ис­числяется минутами. Гидроэнергетикапредставляет отрасль науки и техники по использова­нию энергии движущийся воды (как правило, рек) для производства электрической, а иногда и механической энергии. Это наиболее развитая область энергетики на возобновляемых ресурсах. Важно отметить, что в конечном итоге возобновляемость гидроэнергетических ресурсов также обеспечивается энергией Солнца. Действительно, реки представляют собой поток воды, движущийся под действием силы тяжести с более высоких на поверхности Земли мест в более низкие, и, в конце концов, впадают в Мировой океан. Под действием солнечного излучения вода испаряется с поверхности Миро­вого океана, пар ее поднимается в верхние слоя атмосферы, конденсируется в облака, выпадает в виде дождя, пополняя истощаемые водные запасы рек. Таким образом, используемая энергия рек является преобразованной меха­нической энергией Солнца [11]. Часто бывает, что в силу тех или иных изменений атмосферных условий этот кругооборот нарушается, реки мелеют или даже полностью высыхают. Другим крайним случаем является нарушение этого кругооборота, приво­дящее к наводнениям. Для исключения этих обстоятельств на реках перед гидроэлектростанциями строят плотины, формируются водохранилища, с помощью которых регулируется постоянный напор и расход воды. В странах, расположен­ных на берегах морей и океанов, возможно строительство приливных ГЭС, которые используют энергию приливов, возникающих за счет сил гравитационного взаимодействия Земли, Луны и Солнца. Опыт строительства и эксплуатации приливных ГЭС имеется, например, во Франции (1985 г.) и в бывшем СССР на Баренцовом море. В XX в. строились также ГЭС небольшой мощности, где в качестве преобразо­вателя кинетической энергии воды в механическую энер­гию для вращения электрогенератора использовались водя­ные турбины. Энергия, заключенная в текущей воде, многие тысячелетия вер­но служит человеку. Огромным аккумулятором энергии является мировой океан, по­глощающий большую ее часть, поступающую от Солнца. В нем плещут волны, происходят приливы и отливы, возникают могучие океанские тече­ния. На земле рождаются многочисленные реки, несущие огромные массы воды в моря и океаны. И люди раньше всего научились использовать энер­гию рек в качестве путей сообщения. Когда наступил золотой век электричества, произошло возрождение во­дяного колеса в виде водяной турбины. Считают, что современная гидро­энергетика родилась в 1891 г.

В нашей стране гидроэлектростанции начали строить в 30-х годах про­шлого века. Первенцем была Чигиринская ГРЭС на реке Друть в Могилевской области. В довоенные годы был построен ряд небольших гидроэлек­тростанций на малых реках. Большинство из них в годы войны были разру­шены, а в первые послевоенные годы восстановлены и построены новые. К концу 1956 г. в нашей республики насчитывалось 162 ГЭС общей установ­ленной мощностью 11854 кВт. Однако, начиная с 60-х годов, они начали за­крываться, не выдержав конкуренции с большой энергетикой. В последние годы во многих странах мира, особенно в Японии, Англии, странах Скандинавии, возрастающий интерес проявляется к получению энергии от морских волн, в результате чего эксперименты переросли в стадию реализации проектов. Создано большое количество различных центров, поглощающих и преобразовывающих волновую энергию. В результате воздействия сил притяжения Луны и Солнца происходят периодические колебания уровня моря и атмосферного давления, что при­водит к образованию приливных волн, которые и используются для выра­ботки электроэнергии на приливных электростанциях (ПЭС). Из современных приливных электростанций наиболее хорошо известны крупномасштабная электростанция Ране мощностью 240 МВт (Бретань, Франция), построенная в 1967 году на приливах высотой до 13 м, и небольшая, но принципиально важная опытная станция мощностью 400 кВт в Ки­слой Губе на побережье Баренцева моря (Россия) [12]. Блоки этой ПЭС буксиро­вались на плаву в нужные места для включения ее в местные энергосети в часы максимальной нагрузки электроэнергии потребителями. Неожиданной возможностью океанской энергетики оказалось выращи­вание с плотов в океане быстрорастущих гигантских водорослей, легко перерабатываемых в метан для энергетической замены при­родного газа. Большое распространению получает использование биомассы для получения электроэнергии. Большое внимание приобрела «океанотермическая энер­гоконверсия» (ОТЭК), то есть получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосами глубинными океанскими водами, например, при использовании в замкнутом цикле турбины таких легко испаряющихся жидкостей, как пропан, фреон или аммоний.

Большие запасы энергии содержаться в местах впадения пресноводных рек в моря и соленые водоемы. При наличии перепадов солености возникает осмотическое давление, которое может быть использовано для производства энергии, например, с помощью мембранных установок и другими способами. Остается заманчивой идея использования потока теплой воды Гольфстрима, несущего ее вблизи берегов Флориды со ско­ростью 5 миль в час. Наконец, не следует забывать, что химическая формула воды НОН (Н2О) содержит газ водород, который после извлечения из воды может использо­ваться в качестве горючего для самолетов, автомобилей, автобусов, как ис­пользуется в настоящее время для этих целей сжиженный газ, газ метан. И опыт использования водорода в качестве топлива уже есть. На базе кузова и шасси автобуса MERSEDES-BENZ создан электробус на топливных элемен­тах, получивший название NEBUS. В качестве топлива для него использует­ся водород, который размещается в баллонах, установленных на крыше ав­тобуса. NEBUS тяжелее базового автобуса на 3500 кг. При этом масса бал­лонов с водородом составляет 1900 кг. Силовая установка машины разрабо­тана канадской компанией Ballard. По габаритам она примерно соответству­ет дизелю, применяемому на автобусе этого типа. Мощность батареи топ­ливных элементов – 250 кВт, пробег – 200 км. Для приведения в движение автобуса, рассчитанного на 42 места, применяются асинхронные двигатели мощностью 75 кВт. Количество вредных выхлопных газов, уровень шума у него меньше, чем у автобусов аналогичного класса 1. Гидроэнергетика базируется на использовании возобно­вляемых гидроэнергетических ресурсов, представляющих собой преобразованную энергию Солнца. Напри­мер, в Норвегии более 90 % электроэнергии вырабатывает­ся на ГЭС. Стоимость 1 кВт-ч этой энергии обычно не более 0,04 доллара США, и она легко регулируется по мощности. Наряду с преимуществами у ГЭС имеются и недостатки, которые в ряде случаев ограничивают возможности их строительства и использования. Прежде всего это экологи­ческий ущерб, связанный с заполнением водой больших площадей при создании водохранилищ. В процессе эксплу­атации станций происходит заиливание водохранилищ и плотин, изменяется климат, нарушаются условия для мигра­ции рыб и др. Для ГЭС также характерны большие капи­тальные затраты на строительство [13].

Наша республика – преимущественно равнинная страна. В Государственной программе отмечается, что потен­циальная мощность всех водотоков Беларуси равна 850 МВт. Технически возможно использовать около 520 МВт, эконо­мически целесообразно – 250 МВт. В качестве основ­ных направлений гидроэнергетики в Беларуси определены реконструкция и восстановление существующих ГЭС и со­оружение новых различной мощности. Гидроэлектростанции подразделяются: в конструктивном отношении по схеме и составу основных гидротехнических сооруже­ний на приплотинные и деривационные, сооружаемые на крупных, сред­них и малых реках; в народнохозяйственном отношении на крупные, средние и малые; по величине напора на низконапорные, средненапорные и высо­конапорные. Различают также гидроэлектростанции по характеру регулирования речного стока их водохрани­лищами: с длительным (многолетним, годовым и сезонным), краткосроч­ным (суточным или недельным) регулированием и совсем без регулирования. В приплотинных ГЭС водосток регулируется посредством пло­тин. В деривационных ГЭС большая или существенная часть напора создается посредством безнапорных или напорных деривационных водоводов. В качестве безнапорного деривационного водовода могут быть использованы каналы, лотки, безнапорные туннели или сочетание этих типов водоводов. С самого начала (примерно с 80-х годов прошлого столетия) для произ­водства электроэнергии в гидроэнергетике использовались в основном гид­равлические турбины. Энергетическая программа Республики Беларусь до 2010 г. в качестве основных направ­лений развития малой гидроэнергетики в стране предусматривает:

– восстановление ранее действовавших малых гидроэлектростанций на существующих водохранилищах путем капитального ремонта и частичной замены оборудования;

– строительство новых малых ГЭС на водохранилищах неэнергетического назначения без затопления;

– создание малых ГЭС на промышленных водосбросах;

– сооружение бесплотинных (русловых) ГЭС на реках со значительными расходами воды.

Общую мощность малых ГЭС в республике предполагается довести к 2010 г. до 100 МВт. Бассейны рек Западная Двина и Неман, протекающих по территории Беларуси, относятся к зонам высокого гидроэнергетического потенциала, и использование его еще в 40-х годах XX в. намечалось путем строительства многоступенчатых каскадов ГЭС. Гидроресурсы Беларуси оцениваются в 850-1000 МВт.

studfiles.net

Использование внутренней энергии воды. Часть 1

Мировой океан содержит колоссальные запасы энергии. Внутренняя энергия воды (тепловая), соответствующая перегреву воды на поверхности океана, по сравнению с донными, например, на 20 градусов, имеет значение около 10^26 Дж. Кинетическая энергия течений в океанах оценивается величиной около 10^18 Дж. Но люди сегодня умеют использовать только самую малую долю этой энергии, при этом ценой больших и долго окупающихся капиталовложений. Поэтому энергетика, основанная на использовании внутренней энергии воды, до наших дней казалась малоперспективной.

Но ограниченные запасы ископаемых топлив (газа и нефти), использование которых способствует загрязнению экологии, истощение запасов урана (наряду с опасными радиоактивными отходами), а также неопределенность сроков и последствий влияния на экологию использования в промышленности термоядерной энергии вынуждает инженеров и ученых уделять больше внимания поиску новых возможностей применения безвредных источников энергии: разницы в уровне воды в реках, а также тепла солнца, энергии Мирового океана, ветра. Общественность, а также многие инженеры еще не знают, что работы по извлечению внутренней энергии воды из океанов и морей в последние годы в некоторых странах приобрели уже большие масштабы, что у них есть обещающие перспективы. Океан хранит в себе несколько видов энергии: энергию океанских течений, приливов и отливов, термальную энергию воды (внутреннюю) и некоторые другие.

Энергия приливов

Самым очевидным способом применения энергии океанов является запуск приливных электростанций (ПЭС). Во Франции с 1967 года в устье реки Ранс на приливах, высота которых достигает13 метров, функционирует ПЭС мощностью 240 тыс. кВт с ежегодной отдачей 540 тыс. кВт/ч. Отечественный инженер Бернштейн выявил удобный метод постройки блоков ПЭС, которые можно буксировать в нужные места на плаву, рассчитал рентабельную последовательность включения электростанции в энергосети в часы их наибольшей нагрузки потребителями энергии. Идеи его уже опробованы на ПЭС, созданной в 1968 году возле Мурманска в Кислой Губе; дальше они будут проверены на ПЭС на 6 млн. кВт на Баренцевом море в Мезенском заливе.

В 70-х годах положение в энергетике поменялось. Каждый раз при поднятии поставщиками в Африке, на Ближнем Востоке и в Южной Америке цен на нефть, энергия приливов становилась все более заманчивой, так как она превосходно конкурировала в стоимости с ископаемыми видами топлива. В скором времени в Южной Корее, Советском Союзе и Англии увеличился интерес к очертаниям береговых линий и возможностям сооружения на них энергетических установок. В этих странах серьезно задумались о применении энергии приливов волн и начали выделять средства на исследования данной области.

Маяки и бакены, использующие энергию волн, усеяли побережья морей и океанов Японии. Бакены – свистки береговой охраны США уже годами действуют благодаря колебаниям волн. Сегодня уже практически не осталось прибрежных районов, где бы ни было своего собственного изобретателя, создающего устройства, работающие на основе энергии волн. С 1966 года, два города во Франции удовлетворяют свои потребности в электричестве полностью за счет энергии приливов и отливов.

Получение энергии на основе разности химического состава воды

В водах океана растворено множество солей. Можно ли использовать соленость воды в качестве источника энергии? Можно. Большое содержание солей в океане навело ученых Скриппского института океанографии в Ла-Колла (Калифорния) на мысль о создании таких сооружений. Они пришли к выводу, что для получения большого количества энергии можно создать батареи, где бы происходили реакции между несоленой и соленой водой.

Энергия биомассы мирового океана

В водах океана содержится прекрасная среда для поддержания жизни, в составе которой находятся питательные вещества, соли и минералы. В этой среде кислород, растворенный в воде, питает всех животных морей - от мельчайших до самых больших. Углекислый газ, растворенный в воде, способствует жизни морских растений - от диатомовых одноклеточных водорослей до бурых водорослей, которые достигают высоты 200-300 футов(60-90 метров). Морскому биологу стоит сделать один шаг вперед, и он сможет перейти от восприятия океана в качестве природной системы поддержания жизни к попытке извлечения на научной основе энергии из этой системы. В середине 70-х годов при поддержке ВМФ США группа ученых в области исследования океана, водолазов, морских инженеров создала первую в мире энергетическую ферму в океане на глубине40 футов(12 метров) под гладью Тихого океана, залитой солнцем, рядом с городом Сан-Клемент. Ферма имела небольшие размеры, это был эксперимент. На ней выращивались гигантские бурые водоросли. Директор проекта доктор Говард А. Уилкокс, являющийся сотрудником Центра исследований океанских и морских систем в Сан-Диего (Калифорния), считает, что до 50% энергии полученных водорослей можно превращать в топливно-природный газ метан (С2Н6). Фермы будущего, производящие водоросли на площади около100000 акров(40 тыс. га), смогут вырабатывать энергию, достаточную для того чтобы удовлетворить потребности города в США с населением 50000 человек.

Энергия течений в океанах

Группа океанологов заметила тот факт, что течение Гольфстрим несет воды рядом с берегами Флориды со скоростью5 миль в час. Идея применить этот теплый поток воды заманчива. Возможно ли это? Смогут ли гигантские подводные пропеллеры и турбины, похожие на ветряные мельницы, вырабатывать электричество, получая энергию из течений и волн? Комитет Мак-Артура, находящийся под эгидой Национального управления по исследованию атмосферы и океана в Майами (Флорида) в 1974 сделал заключение, что СМОГУТ. Общее мнение состояло в том, что определенные проблемы есть, но они все могут решиться в случае выделения ассигнований, так как «в данном проекте нет ничего, что бы превышало возможности технологической и современной инженерной мысли».

Термальная энергия океана (внутренняя энергия воды)

Заметное внимание получила «океанотермическая энергоконверсия» (ОТЭК) – генерирование электрической энергии на основе разности между температурами воды на поверхности океана и глубинными океанскими водами, засасываемыми насосом, например, при использовании в замкнутом цикле турбины фенола или аммония (легкоиспаряющихся жидкостей).

Температура океанской воды различна в разных местах. Между тропиком Козерога и тропиком Рака поверхность воды прогревается до 82 градусов по Фаренгейту (27°С). На глубине около 2000 футов(6000 метров) температура снижается до 35-38 градусов по Фаренгейту (2-3,5°С). Можно ли использовать разницу температур, т.е. внутреннюю энергию воды в целях получения электрической энергии? Может ли тепловая энергоустановка, находящаяся под водой, производить электричество? Да, может.

В далекие 1920-е годы Жорж Клод, решительный, настойчивый и одаренный французский физик реши исследовать эту возможность. Он выбрал участок океана рядом с берегами Кубы, сумел после нескольких неудачных попыток создать установку 22 кВт мощностью. Это стало научным достижением и приветствовалось множеством ученых. Применяя теплую воду с поверхности океана и холодную с глубины, создав соответствующую технологию, мы имеем все необходимое для генерирования электроэнергии, уверяли сторонники применения внутренней энергии воды океана. «По оценкам, полученным нами, в водах поверхности океана существуют запасы энергии, превышающие в 10000 раз общемировую потребность в энергии». «Увы, - отрицали скептики, - Жорж Клоду удалось получить лишь 22 киловатта электроэнергии в заливе Матансас. Дало ли это прибыль?» «Нет, не дало, так как для получения этих 22 киловатт, Клоду пришлось затратить на работу насосов 80 киловатт».

В наше время профессор Скриппского океанографического института Джон Исаакс выполняет вычисления более аккуратно. По его данным, современная технология поможет создать энергоустановки, применяющие для выработки электроэнергии разницу температур в водах океана (внутреннюю энергию воды), которые вырабатывали бы его в два раза больше, чем потребляет весь мира на сегодняшний день. Это будет электрическая энергия, которая преобразует термальную энергию океана (ОТЕС).

Что же может дать доступ к этой энергии? Об этом читайте во второй части статьи.

zeleneet.com

Как использовать энергию воды? - Энергия воды - УРАЛ

Традиционные энергоресурсы не вечны и рано или поздно закончатся, а с учетом возрастающего энергопотребления это произойдет скорее рано, чем поздно, поэтому так важно использование альтернативной энергии.

С давних пор люди, наблюдая за течением рек и падением водопадов, поняли, как можно использовать энергию воды.

Что может быть проще и гениальнее водяной мельницы?

Вода, вращая колесо, преобразует кинетическую энергию движущегося потока в механическую работу колеса. Современные гидроэлектростанции работают на том же принципе, но на них механическая энергия дополнительно превращается в электрическую.

Энергия приливов и отливов

Долгое время, периодически повторяющиеся, приливы и отливы не могли объяснить. Сейчас уже понятно, что Солнце и Луна своей гравитацией создают неравномерное распределение воды в океане.

Появляются водяные «горбы», которые за счет вращения земли перемещаются к берегу. Но из-за вращения меняется и положение океана, что вызывает уменьшение гравитации.

Прилив заполняет специальные резервуары, которые образуют дамбы на берегу. Во время отлива вода движется обратно и этот поток вращает турбины.

Чем больше разница высот прилива и отлива, тем большая энергия используется. была как можно больше. Поэтому выгоднее создавать приливные электростанции в узких местах, где разница высот не менее 10 метров. Примером может служить приливная электростанция в устье реки Ранее во Франции.

К недостаткам таких станций можно отнести то, что при создании дамбы увеличивается амплитуда приливов, а это приводит к затоплению суши соленой водой и, как следствие, изменяется экология.

Энергия морских волн

Природа энергии морских волн схожа с энергией приливов, но все же принято рассматривать ее отдельно.

У этой энергии довольно большая удельная мощность — средняя мощность волнения океана 15 кВт/м, при высоте волны около двух метров, это значение может достигать 80 кВт/м. Но это примерные данные, т.к. не вся энергия морских волн превращается в электрическую — коэффициент преобразования 85%.

Из-за сложности создания установок, использование энергии морских волн не нашло широкого применения и находится только на стадии освоения.

Но если она будет освоена, то можно быть уверенным, что современная энергетика перестанет быть глобально зависимой от ископаемых источников энергии: угля, нефти и газа.

Гидроэлектроэнергетика

Энергия водного потока доступна человеку еще со времен создания мельниц.Сейчас на пути потоков воды ставятся гидроэлектростанции, которые преобразуют эту энергию в электрическую.

Мощность энергии зависит от высоты падения, поэтому на ГЭС строят плотины, которые позволяют регулировать уровень подъема и величину потока воды.

Создание мощной ГЭС трудоемко и очень дорого, но со временем полностью себя окупает, т.к. водные ресурсы неисчерпаемы и доступны в любое время.

К недостаткам создания ГЭС можно отнести:

  • зависимость строительства от больших запасов энергии воды
  • затопление плодородных земель
  • опасность строительства на горных реках из-за высокой сейсмичности
  • влияние затопления и нерегулируемого сброса воды на экосистему.

Уменьшают это влияние новые методы работы станций и одним из таких методов стали аккумуляторы воды.

После того как вода проходит через турбины она накапливается в больших резервуарах и когда нагрузка на ГЭС минимальна, то за счет энергии тепловой или атомной станции накопленная вода перекачивается обратно наверх и цикл повторяется.

Во Франции придумали использовать энергию падающего дождя!

Попадая на пьезокерамический элемент, каждая капля вызывает возникновение электрического потенциала. Затем электрический заряд видоизменяется в колебания, пригодные для использования.

Гидроэнергетика сейчас уже развита во многих странах и составляет 25% от общего объема электроэнергии. А темпы ее развития позволяют считать ее очень перспективным направлением.

www.ural.org

Энергия воды, тепловая энергия воды

Гидроэнергостанции – еще один из источников энергии, претендующих на экологическую чистоту. В начале XX века крупные и горные реки мира привлекли к себе внимание, а концу столетия большинство из них было перегорожено каскадами плотин, дающими баснословно дешевую энергию.

Однако это привело к огромному ущербу для сельского хозяйства и природы вообще: земли выше плотин подтоплялись, ниже – падал уровень грунтовых вод, терялись огромные пространства земли, уходившие на дно гигантских водохранилищ, прерывалось естественное течение рек, загнивала вода в водохранилищах, падали рыбные запасы и т.п. На горных реках все эти минусы сводились к минимуму, зато добавлялся еще один: в случае землетрясения, способного разрушить плотину, катастрофа могла привести к тысячам человеческих жертв.

Поэтому современные крупные ГЭС не являются действительно экологически чистыми. Минусы ГЭС породили идею “мини-ГЭС”, которые могут располагаться на небольших реках или даже ручьях, их электрогенераторы будут работать при небольших перепадах воды или движимые лишь силой течения. Эти же мини-ГЭС могут быть установлены и на крупных реках с относительно быстрым течением.

Детально разработаны центробежные и пропеллерные энергоблоки рукавных переносных гидроэлектростанций мощностью от 0.18 до 30 киловатт. При поточном производстве унифицированного гидротурбинного оборудования “мини-ГЭС” способны конкурировать с “макси” по себестоимости киловатт-часа. Несомненным плюсом является также возможность их установки даже в самых труднодоступных уголках страны: все оборудование можно перевезти на одной вьючной лошади, а установка или демонтаж занимает всего несколько часов.

Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная   геликоидная турбина Горлова (по имени ее создателя). Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока - реки, океанского течения или морского прилива. Это изобретение изменило привычное представление о гидроэнергостанции, мощность, которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.

infinite-energy.ru