Химические методы очистки сточных вод. Химическая очистка сточных вод путем обработки их реагентом это


Реагентный метод очистки сточных вод

Промышленные сточные воды часто содержат опасные соединения со значительной атомной массой. Этим соединениям присущи свойства металлов, а сами вещества называются тяжелыми металлами – ценными в производстве и опасными для окружающей среды. Процесс выделения данных веществ из очищаемой воды – это и есть очистка стоков от тяжелых металлов. Она может осуществляться разными методами – мембранным, ионным, сорбционным и путем электролиза.Очистка сточных вод

Основы очистки сточных вод. Тяжелые металлы и методы их удаления

Очистка стоков от ионов тяжелых металлов производится за счет перевода ионов тяжелых металлов в нерастворимые соединения в ходе нейтрализации сточных вод с применением различных щелочных реагентов. Так при нейтрализации кислых стоков известковым молоком с высоким содержанием известняка, растворами соды ионы тяжелых металлов начинают осаждаться в виде карбонатов. Последние в воде менее растворимы, чем соответствующие гидроксиды. Кроме того, все основные карбонаты осаждаются при сравнительно невысоких значениях рН (более низких, чем соответствующие гидроксиды).

Как происходит очистка сточных вод от тяжелых металлов?

При одновременно осаждении гидроксидов нескольких металлов при равной величине рН достигаются более высокие результаты, чем при раздельном осаждении каждого металла по отдельности. При локальном обезвреживании никель, цинк, кадмий содержащих потоков в роли щелочного реагента желательно использовать известь. Расход извести при этом составляет на 1 весовую часть кадмия — 0,5 в.ч. СаО, никеля — 0,8 в.ч. СаО, а также цинка — 1,2 в.ч. СаО. При небольшом объеме стоков обычно используется периодическая схема очистки, а при значительных – непрерывная либо смешанная.

Осаждение нерастворимых соединений происходит в отстойниках (предпочтительно вертикальных). Число отстойников – минимум два, оба должны быть рабочими. Продолжительность отстаивания – от двух часов. Для ускорения осветления прошедших нейтрализацию сточных вод к ним рекомендуется добавлять синтетический флокулянт полиакриламид.

Влажность осадка после прохождения отстойников составляет 98-99,5%. Для ее снижения рекомендуется дополнительное отстаивание веществ в шламоуплотнителе в течение нескольких дней. После шламоуплотнителя влажность падает до 95-97%. В некоторых случаях до сброса очищенных стоков в канализацию либо при их дальнейшем обессоливании с применением ионного обмена, электродиализа производится снижение концентрации взвешенных частиц в очищенной воде. Осветление будет осуществляться путем фильтрования через устройства с песчаной, двухслойной или плавающей загрузкой ФПЗ.

Методы очистки сточных вод от ионов тяжелых металлов

Для удаления ионов тяжелых металлов, кроме реагентного (самый популярный вариант), могут применяться и другие решения.

Реагентная очистка сточных воды от ионов тяжелых металлов

Самое широкое распространение в практике водоочистки от ионов тяжелых металлов имеет реагентный метод. Он включает процессы нейтрализации, окислительные и восстановительные реакции, осаждение, обезвоживание осадка, позволяет удалять ИТМ. Ионы тяжелых металлов в данном случае переводятся в гидроксидные соединения за счет повышения рН усредненных стоков до показателей их гидратообразования с осаждением и фильтрацией.

Главное достоинство реагентного метода – эффективное обезвреживание кислотно-щелочных стоков разных объемов с любой заданной концентрацией ионов тяжелых металлов. Недостатки – значительный расход реагентов, получение неутилизируемого осадка, повышение солесодержания стоков, очищенных от ИТМ, значительные эксплуатационные расходы, необходимость организации системы содержания реагентного хозяйства.

Ионнообменный метод

Ионообменный метод используется для удаления ионов металлов, прочих примесей, обессоливания. Его суть состоит в способности ионообменных материалов убирать из растворов электролита ионы, а давать эквивалентное количество ионов ионита. Для очистки используются синтетические ионообменные смолы в виде гранул – иониты. Они состоят из полимерных веществ, нерастворимых в воде, имеют на поверхности подвижные ионы, которые при соблюдении определенных условий вступают в реакции обмена с ионами аналогичного знака, которые есть в воде. Существуют слабо- и сильнокислые катиониты с анионитами, в отдельную категорию выделяются иониты смешанного действия. Избирательное поглощение молекул загрязняющих веществ поверхностью твердого адсорбента происходит в результате воздействия на них поверхностных неуравновешенных сил адсорбента.

Ионообменные смолы способны к регенерации, которая осуществляется насыщенными растворами. Процессы восстановления протекают автоматически, время регенерации составляет в среднем 2 часа.

Умягчение катионированием

Умягчение катионированием – еще один часто используемый способ обессоливания. Он предполагает обработку воды методом ионного обмена, в результате которой начинается катионный обмен. В зависимости от типа ионов различается два вида процесса – Н и Na.

Натрий-катионитовый метод эффективно умягчает воду в том случае, если содержание взвешенных частиц в ней составляет до 8 мг/л. Жесткость снижается при одноступенчатом натрий-катионировании до 0,05-0,1 мг-экв/л, а при двухступенчатом максимально до 0,01 мг-экв/л. Достоинства данного варианта – простая утилизация продуктов регенерации, дешевизна.

Водород-катионитовый метод используется для глубокого умягчения. В его основе лежит фильтрация стоков через слой катионита. рН фильтрата снижается за счет кислот, образующихся в процессе очистки.

Ионный обмен

Для очистки стоков от анионов сильных кислот применяется технологическая схема одноступенчатого Н-кати и ОН-анионирования с применением сильнокислотного катионита, слабоосновного анионита. Для глубокой очистки сточных вод применяется одно-или двухступенчатое Н-катионирование с последующим двухступенчатым ОН-анионированием. Если в стоках много диоксида углерода и его солей, то емкость сильноосновного анионита быстро истощается. Для уменьшения истощения стоки после катионитового фильтра дегазируют в специальных приборах.

Катионирование

Цеолиты

Цеолиты – это алюмосиликаты, которые имеют пористую регулярную структуру. Из мелких кристалликов синтетических или природных цеолитов с помощью связующего либо без него формируются мелкие гранулы. Цеолиты широко используются для улавливания паров воды, в нефтеперерабатывающей промышленности в целях очистки и регенерации масел, увеличения степени очистки, качества жидких топлив. Как и многие другие адсорбенты, цеолиты подходят для очистки отходов пищевой промышленности, стоков промышленных газовых выбросов от органики. Цеолиты обладают ионообменными свойствами – на данный момент они широко используются в промышленности, сельском хозяйстве. Сфера применения веществ вообще очень широкая – они могут выполнять роль катализатора, улучшающего качество почв компонента, удобрения и так далее. Промышленные адсорбенты имеют пористую структуру и развитые внутренние поверхности, за счет чего поглощают значительные объемы адсорбируемого компонента.

Электродиализ

Электpодиализ – это пpоцесс пеpеноса ионов чеpез мембpаны под воздействием электpического поля. Для очистки стоков методов электpодиализа используются электpохимически активные мембpаны ионитового типа. Метод электpодиализа может использоваться для удаления малоконцентpиpованных стоков минеpальных солей для повтоpного использования обессоленных водных масс в пpоизводстве либо переработки высококонцентpиpованных вод в целях регенерации из них ценных веществ. Удаление солей происходит в многокамерных аппаратах, где плоские мембраны располагаются параллельно.

Внутренний электролиз

Под внутренним электролизом подразумевается выделение из растворов металлов в ходе гальванического процесса. Электролиз начинается при соединении электродной пары внешним проводником либо муфтой и длится до тех пор, пока металл полностью не осядет. Когда гальваническая пара погружается в раствор, возникает требуемая разность потенциалов. На менее активном металле (это катод) начинаются процессы восстановления с выделением определенного металла из раствора. Более легкоотрицаемые металлы растворяются (формула химического процесса – Me + m*H O — Me *m*H O + z*e). Затем ионы металла под воздействием электрического поля начинают разряжаться (Me * l*H O + ze — Me + l*H O).

Цементация

Цементация – отдельная разновидность внутреннего электролиза, в ходе которой менее активный металл проходит процесс восстановления на более активном. Речь идет об аноде, который в результате сложных химических реакций растворяется.

Электрохимический метод

Электролиз – еще один широко применяемый для выделения из растворов металлов метод. Сложнее всего с применением электролиза выделять частицы, которые содержатся в стоках в небольших концентрациях. Процесс осуществляется в двух режимах – либо при постоянном потенциале, либо при неизменной плотности.

При постоянной силе тока электролиз для очистки растворов с разными сортами ионов использовать нежелательно, чтобы в течение заданного срока времени плотность тока предельных значений не превышала. В противном случае еще до окончательного завершения процесса выделения данного металла потенциал электрода может достичь той вершины, при которой начнется выделения уже другого металла, и состав осадка получится неопределенным. Раздельное выделение металлов обеспечивается за счет достаточного различия в потенциалах ионного разряда определяемых металлов (данный показатель обуславливается разницей в нормальных потенциалах, перенапряжении или и тем, и другим показателем).

Общая характеристика гальванического производства

Производства, деятельность которых связана с электрохимической или химической обработкой металлов, считаются самыми вредными для среды. Особую опасность несут тяжелые металлы, под воздействием которых у человека развиваются опасные патологии сердца, печени, сосудов, нервной системы. Кроме того, тяжелые металлы имеют мутагенное действие. Именно по этим причинам вопросы эффективной очистки стоков в процессе обработки металлов на производствах на данный момент являются актуальными.

Состав сточных вод гальванических цехов

Металлообрабатывающие заводы цветной металлургической промышленности потребляют значительные объемы воды в ходе реализации основных технологических процессов. Только при промывке изделий после химических, гальванических покрытий ежегодно вымывается от 3300 т цинка, 2400 т никеля, 125 т олова, 460 т меди, 500 т хpома, 135 т кадмия.

Очистка сточных вод гальванических цехов от тяжелых металлов: все существующие способы

Для снижения уровня экологической опасности производств используются разные способы извлечения металлических примесей из вод промывки. Процессы очистки стоков базируются на химических, физических и биологических процессах. Потребность в значительных капитальных затратах на строительство очистных сооружений, экономическая целесообразность которых в большинстве случаев проявляется только в рамках рассмотрения экологических задач народно-хозяйственного, регионального масштаба, затрудняет расширение сфер их применения.

Сдерживается процесс внедрения передового оборудования и из-за дефицита определенных химикатов, материалов, устройств. Главными задачами в этой связи является разработка новых способов очистки и усовершенствование старых. В комплексе это должно уменьшить капитальные расходы на очистку воды и массово внедрить автоматические передовые системы, что в итоге приведет к снижению эксплуатационных расходов. Глубокая очистка стоков способна не только улучшить экологию окружающей среды, открыть источники для получения ценных металлов.

Применение аппараты вихревого слоя в процессах очистки сточных вод гальванических цехов

В ходе очистки стоков гальванических цехов широко применяются аппараты вихревого слоя. Они предназначены для ускорения химических и физических процессов. АВС – это герметичная установка, которая оснащается системой охлаждения, рабочей камерой, электромагнитным устройством, пультом управления. Внутри камеры находятся ферромагнитные частички, которые приводятся в хаотичное движение за счет действия электромагнитного поля. Эффективность всех рабочих процессов установки зависит от скорости перемещения и частоты соударения частичек внутри камеры. На данные показатели оказывают влияние изменения напряжения поля.

Обработка воды в аппаратах АВС позволяет удалять кишечные палочки, протеи, бактероиды, гельминты, другие анаэробные микроорганизмы. Степень дезинвазии определяется с учетом продолжительности обработки воды электромагнитным полем и вихревым слоем ферромагнитных частиц. АВС способствует повышению скорости процесса дезинвазии, позволяет экономить электроэнергию. Аппараты вихревого слоя могут использоваться в комплексе с другими видами очистки, что позволяет достигать максимально эффективных результатов водообработки.

Выводы

Проблема утилизации стоков с примесями тяжелых металлов сегодня стоит особенно остро. Для удаления железа используются разные методики, которые делятся на регенеративные и деструктивные. Самым популярным является реагентный метод – дешевый, простой и эффективный.

global-aqua.ru

Глава 3. Реагентный метод очистки

Наибольшее распространение в практике очистки сточных вод от ионов тяжелых металлов получил реагентный метод. Этот метод включает в себя процессы нейтрализации, окислительно-восстановительные реакции, осаждение и обезвоживание образующегося осадка, и позволяет довольно полно удалять из стоков тяжелые металлы. При этом методе ионы тяжелых металлов переводятся, как правило, в гидроксидные соединения путем повышения рН усредненных стоков до рН их гидратообразования с последующим осаждением, фильтрацией. Нейтрализация свободных минеральных, кислот и химическое осаждение ионов тяжелых металлов (железо, цинк, никель, медь и др.) в виде соответствующих гидроксидов, а также основных карбонатов производятся с помощью щелочных реагентов. В качестве осадителей применяют оксиды, гидроксиды, соли щелочных, щелочноземельных и переходных металлов, сульфид- и фосфатсодержащие материалы.

В нашей стране для этой цели чаще всего применяют водную суспензию гидроксида кальция, содержащую некоторое количество карбоната кальция (известковое молоко). Нейтрализацию кислых сточных вод щелочными реагентами проводят обычно до рН - 8,5...9. Автоматическое дозирование щелочного реагента производится по заданному значению рН обработанной воды. При наличии в сточных водах комплексообразующих веществ (винная, лимонная и др. органические кислоты, аммиак) для обеспечения полноты осаждения ионов тяжелых металлов требуется предварительного удаления из воды этих веществ. Для нейтрализации щелочных сточных вод используют растворы серной или соляной кислоты. Нейтрализованные сточные воды, содержащие взвесь гидроксидов и карбонатов тяжелых металлов, сульфат и карбонат кальция и др. нерастворимые в воде примеси, подвергают механической очистке с целью их отделения методами отстаивания, флотации, фильтрования.

Известен способ очистки сточных вод от ионов тяжелых металлов, основанный на образовании труднорастворимых соединений этих металлов с железом — ферритов (способ ферритизации). Он заключается в обработке сточных вод раствором солей двух- и трехвалентного железа с последующим подщелачиванием реакционной смеси известковым молоком или раствором едкого натра и ее нагреванием. Образующийся при этом осадок представляет собой смесь оксигидратов железа, гидроксидов тяжелых металлов, магнетита и ферритов и обладает магнитными свойствами. Этот способ обеспечивает практически полное удаление ионов тяжелых металлов из сточных вод.

Основное достоинство реагентного метода – возможность применения его для обезвреживания кислотно-щелочных сточных вод различных объемов с различной концентрацией ионов тяжелых металлов. Высококонцентрированные сточные воды гальванических производств (отработанные технологические растворы и электролиты) чаще всего очищают совместно с малоконцентрированными (промывочными) сточными водами, в частности на установках для их реагентной очистки.

Особо следует отметить, что при реагентных методах очистки и выполнении технологических регламентов остаточные концентрации основных ионов тяжелых и цветных металлов в очищенных стоках достигают следующих минимальных величин, мг/л:

Fe(OH)2 - 0,3-1,0

Zn(OH)2- 0,05

Cu(OH)2 -0,1-0,15,

и представлены, в основном, в виде их гидроксидов, легко диссоциируемых и растворимых в слабокислых водных растворах.

Более глубокая очистка от катионов тяжелых металлов возможна путем их осаждения в виде труднорастворимых сульфидов. Известны способы использования сероводорода в качестве осадителя, однако практическое применение этого способа снижается из-за токсичности сероводорода, выделяющегося в атмосферу. Эта же причина сдерживает применение в качестве осадителя полисульфида кальция, используемого в сельском хозяйстве в качестве инсектицида.

Общим и главным недостатком осадительных способов очистки является образование плохоотстаивающихся и труднофильтруемых осадков - шламов, вопрос утилизации которых еще не везде решен.

На основании изученных литературных данных для очистки сточных вод, образующихся при изготовлении многослойных печатных плат в результате химического и гальванического процессов меднения был выбран реагентный метод очистки. Метод имеет такие достоинства как возможность очистки сточных вод в широких интервалах концентраций тяжелых металлов, универсальность, простота оборудования в эксплуатации, нет необходимости разделения промывных вод и концентратов. Метод находит широкое применение на гальванических предприятиях [10].

На рис.3. представлена технологическая схема процесса очистки сточных вод гальванического производства. Усредненные сточные воды поступают в реактор, куда производится дозирование следующих реагентов: реагент для нейтрализации, коагулянт и флокулянт. После завершения химических реакций и образования стабильных флокул, мешалка выключается и производится осаждение взвешенных веществ. Образовавшийся шлам перекачивается в шламоуплотнитель, а осветленная вода направляется в накопительную емкость. Далее очищенная вода проходит доочистку на двухслойном песчаном фильтре и после заключительного контроля уровня рН производится сброс очищенной воды. Шлам временно накапливается в уплотнителе и далее поступает на обезвоживание на камерный фильтр-пресс.

Рис.3.. Технологическая схема процесса очистки сточных вод гальванического производства.

studfiles.net

ХИМИЧЕСКАЯ ОЧИСТКА ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД

КАНАЛИЗАЦИЯ

Для химической очистки производственных сточных вод в настоя­щее время используются различные реагенты. Наибольшее применение имеют: окислители — хлор, перманганат калия, озон; подщелачиваю­щие вещества — известь, гидроксид натрия, сода; подкисляющие веще­ства — серная и соляная кислоты.

Рис. 5.30. Схема реагентной очистки производственных сточных вод

1 ~ сточные воды обработки цветных металлов, 2 — усреднитель; 3—реагентное хозяйство; 4 — по­дача реагентов, 5 — смеситель; 6 — нейтрализованные хромистые и щелочные сточные воды; 7—кон­тактный резервуар, 8 — полиакриламид, 9 — отстойники; 10— очищенная вода, 11 — шлам на обез­воживание

В ряде случаев химическая обработка требуется в качестве предва­рительной перед последующей биологической очисткой этих сточных вод.

Принципиальная схема реагентной очистки производственных сточ­ных вод показана на рис. 5.30.

Окисление загрязняющих сточные воды веществ применяется в тех случаях, когда эти вещества нецелесообразно или нельзя извлечь или разрушить другими способами, в том числе путем биохимического окис­ления. К таким веществам относятся цианистые соединения, загрязня­ющие сточные воды многих производств, например сточные воды фаб­рик обогащения свинцово-цинковых и медных руд, цехов гальванических покрытий машиностроительных заводов и т. д.

Для очистки сточных вод от цианистых соединений применяют окис­ление циан-иона CN - до безвредного цианата CNO - или переводят ток­сичные соединения в нетоксичный комплекс или осадок (в виде нераст­воримых цианидов), удаляемый из сточных вод отстаиванием или филь­трованием.

Окисление цианидов до малотоксичных цианатов может быть произ­ведено относительно недорогим окислителем— гипохлоритм в щелоч -

Ной среде при значении рН = 10...11. В качестве реагента, содержащего гипохлорит — ион ОСІ-, служат хлорная известь, гипохлорит кальция или гипохлорит натрия. Между гипохлоритом и цианидами протекают следующие реакции:

В случае простых ядовитых растворимых цианидов

CN—+OCr~->CNO—-fCl~,

Для комплексных ядовитых растворимых цианидов (меди и цинка):

2Cu(CN)3~+70C1~+20H-+h30->6CN0-+7C1-+2CU(0H)2

Ї

ZnfCN)2-+40С1~+20Н—^4CNO~~+4С1-+Zn(OH)2.

-

Образующиеся цианаты легко гидролизуются в воде до совершенно безвредных и нетоксичных карбонатов и аммиака.

CN0-+2h30-»C0!-+NHf.

Как видно из первой реакции, на 1 циан-ион требуется 1 гипохлорит - ион. Так как молекулярная масса хлора равна 71, а циана — 26, то на 26 ч. циана требуется 71 ч. активного хлора, соответственно на 1 ч. циана требуется 2,73 ч. активного хлора (это число показывает необхо­димое по реакции количество активного хлора для окисления раствори­мого ядовитого циан-иона до цианат-иона). Следовательно, если в сточ­ной воде концентрация цианидов равна В мг/л, то требуемое теоретиче­ски по реакции количество активного хлора равно:

ХС1 = 5-2,73. (5.20)

Из второй реакции видно, что на 6 комплексных циан-ионов меди требуется 7 гипохлорит-ионов, откуда искомый коэффициент равен 71 - 7 : 26-6=3,18. Следовательно, если в сточной воде содержится С мг/л комплексных цианидов меди в пересчете на циан, то требуемое теорети­чески по реакции количество активного хлора Ха равно:

*с,=С-3,18. (5.21)

Для комплексных цианидов цинка из третьей реакции следует, что для окисления 4 циан-ионов необходимо 4 гипохлорит-иона, т. е. коэф­фициент пропорциональности, так же как и для простых ядовитых рас­творимых цианидов, равен 2,73.

При наличии в сточной воде простых цианидов в концентрации В мг/л, комплексных цианидов меди в концентрации С мг/л теоретиче­ски необходимое на 1 циан количество активного хлора для окисления их до цианатов равно сумме:

Хс1 = 5-2,73 + С-3,18. (5.22)

Товарная хлорная известь содержит около 20—25% активного хлора, а гипохлорит кальция — до 60%. Требуемое количество реагента X, кг/сутки, определяют по формуле

Х_ *ciQn_ Хс Qn-100

А-10 а-1000 ' 1 ' '

Где Ха — количество активного хлора, необходимое для окисления циа­нидов и подсчитанное по ранее приведенным формулам, мг/л или г/м3;

Q— количество цианосодержащих сточных вод, м3/сутки; п — коэффициент избытка реагента, принимаемый обычно равным 1,2-1,3;

А — содержание активного хлора в товарной хлорной извести или гипохлорите кальция, %.

Однако при проведении реакции окисления цианидов гипохлорит-ио - ном окислитель может расходоваться не только на цианиды, но и на окисление других веществ, присутствующих в сточной воде. Поэтому значение коэффициента п должно быть найдено для конкретной сточной воды путем пробного ее хлорирования.

Рабочий раствор реагента обычно приготовляют в виде 5%-ной концентрации по активному хлору.

Технологическая схема автоматически работающей установки для обезвреживания сточных вод цеха гальванических покрытий на одном из заводов приведена на рис. 5.31.

Рис 5 31. Технологическая схема автоматизированной установки для обезвреживания сточных вод цеха гальванических покрытий

/ — баки для реагентов; 2 — щит управления и автоматики; 3 — вентили ручного дозирования реа­гентов; 4 — резервуар для цианистых стоков; 5 — регулирующие вентили; 6 — лопастные мешалки; 7 — датчик рН-метра, 8 — датчик концентрации цианидов; 9 — резервуар для хромовых стоков; 10 — датчик концентрации хрома; 11 — резервуар-нейтрализатор; 12 — поплавковый регулятор; /3—резервуар для обезвреженных сточных вод; 14 — насос для перекачки обезвреженных сточных

Вод

Сточные воды цеха разделены на три группы: первая — содержащие 5—50 мг/л цианидов, вторая—17—105 мг/л шестивалентного хрома Сг6+, третья — кислоты и щелочи.

Каждая группа стоков поступает в отдельный резервуар, рассчитан­ный на 30—40-минутное пребывание в нем стоков. Часть его полезной емкости (10—15%) является камерой смешения, куда автоматически подаются реагенты, в том числе щелочи и кислоты для поддержания постоянной величины рН. В резервуаре для цианистых стоков рН=10,5, для хромовых стоков рН = 2,5.

Обезвреженные и нейтрализованные стоки направляются в отстой­ник. Стоки, содержащие простые и комплексные соединения циана, обезвреживаются гипохлоритом натрия.

Обезвреживание хрома в основном происходит в той же технологи­ческой последовательности, что и обезвреживание циана.

В качестве реагента для восстановления Сг6+ до Сг3+ используется гидросульфит натрия. Реакция идет сначала в кислой среде. В последу­ющем в щелочной среде Сг3+ выпадает в осадок в виде Сг(ОН)3.

Осаждение гидроксида хрома происходит в отстойнике.

Остаточные концентрации цианидов и хрома в очищенной воде не превышают допустимых санитарными нормами.

Электрохимическое окисление. Электрохимическая обработка произ­водственных сточных вод применяется либо в целях разрушения содер­жащихся в них вредных веществ путем их электрохимического окисле­ния на аноде, либо в целях извлечения металлов, кислот и других ве­ществ, содержащихся в отработанных растворах.

Так, например, при обработке сточных вод цехов гальванических по­крытий и полиметаллических рудообогатительных фабрик, содержащих комплексные цианиды меди, на катодах выделяется 60—70% металли­ческой меди.

Электролиз отработанных травильных растворов, содержащих FeSO* и свободную h3SO4, с применением анионитовых мембран дает возмож­ность регенерировать 80—90% h3S04 и получить порошкообразное ме­таллическое железо (25—50 кг из 1 м3 растворов).

Очищенные в результате электролиза растворы можно полностью использовать при приготовлении свежих травильных растворов и рас­творов h3S04, загружаемых в анодные камеры электролитической ван­ны перед следующим циклом очистки.

При обработке концентрированных сточных вод (содержание CN более 1 г/л) электрохимический способ значительно дешевле реагент - ного.

Озонирование. Применение озона для обработки производственных сточных вод обусловлено необходимостью разработки методов глубокой очистки сточных вод с целью их повторного использования.

Высокая реакционная способность озона вступать во взаимодействие со многими минеральными и органическими соединениями, сильное окислительное действие, возможность получения его прямо на станции из кислорода воздуха обусловливают перспективность применения озона В качестве реагента.

Кроме того, озонирование не приводит к увеличению солевого состава очищенной воды, не загрязняет воду продуктами реакции и другими при­месями. Это важно при повторном использовании воды для технологи­ческих нужд.

Окислительное действие озона объясняется легкостью отдачи им ато­ма кислорода. Под действием озона почти все металлы переходят в окислы.

В процессе обработки сточной воды озон, подаваемый в реактор в ви­де озоно-воздушной смеси, диспергированной на мельчайшие пузырьки, вступает в химические реакции. Озонирование представляет собой про­цесс абсорбции, осложненный химической реакцией в жидкой фазе.

Основным промышленным способом получения озона является его синтез из кислорода воздуха под действием электрического разряда в генераторе озона.

На рис. 5.32 представлена принципиальная технологическая схема озонаторной установки для глубокой очистки производственных сточных вод. Установка состоит из двух самостоятельных узлов: узла получения озона и узла очистки сточных вод.

Узел получения озона состоит из блока подготовки воздуха — очист­ки и осушки и блока получения озона.

Блок подготовки воздуха включает следующие аппараты: фильтры, теплообменники трубчатого типа, влагоотделитель, осушительную уста­новку.

Кислород или воздух охлаждается в теплообменниках до 6° С и, по­падая во влагоотделитель, частично освобождается от капельной влаги. На выходе из влагоотделителя установлен войлочный фильтр.

Для устойчивой работы озонатора предусматривается осушительная установка типа УОВ, которая обеспечивает осушку газа перед озонато­рами до содержания влаги 0,05—0,1 г/м3.

Охлажденный, обеспыленный и освобожденный от влаги воздух

Поступает в генератор озона, где под действием тихого электрического разряда образуется озон. При пуске озонаторов первые 15—20 мин они работают «на свечу» до установления нормального режима, а затем переключаются на подачу озоно-воздушной смеси в реакторы.

Сточная вода, прошедшая предварительную очистку на биохимичес­ких сооружениях, самотеком или с помощью насосов поступает в кон­тактные резервуары, в которые подается озонированный воздух. Для более полного использования озона и предотвращения попадания его в окружующую среду рекомендуется применение двух последовательно работающих реакторов. При этом обедненная озоно-воздушная смесь

Воздух

Рис 5 32. Технологическая схема озонаторной установки

—теплообменники, 2 — впагоотделитель, 3 ~ войлочный фильтр, 4 — осушительная установка; 5—генератор озона, 6—отвод отработанного газа, 7—впуск сточной воды, 8 — предварительный реактор, 9 — основной реактор, 10 — выпуск очищенной воды

Из основного реактора подается в предварительный реактор, где всту­пает в контакт со свежими порциями воды. Благодаря этому обеспечи­вается почти полная абсорбция озона водой. В предварительном реакто­ре протекают преимущественно процессы окисления органических ве­ществ, содержащихся в сточной воде. В основном же реакторе, наряду с процессом окисления, начинается интенсивное стерилизующее дейст­вие озона. В верхней части этого реактора при противоточном движе­нии превалируют окислительные процессы, а в нижней части, над филь - тросными пластинами, вода максимально очищается.

Для диспергирования озонированного воздуха в сточной воде ис­пользуют перфорированные трубы или фильтросные пластины.

В качестве запорной арматуры применяются вентили из нержавею­щей стали диафрагменного типа, футерованные фторопластом.

При конструировании озонаторной установки важно правильно подо­брать объем реакторов.

Общий объем реакторов определяется по формуле

W^^Qt, (5.24)

Где Q— количество СТОЧНОЙ ВОДЫ, М3/ч;

T — продолжительность пребывания сточной воды в реакторах, ч, определяемая скоростью химической реакции или скоростью массообмена;

Г)—коэффициент увеличения объема воды при - продувке, принима­емый равным 1,1.

Рабочую высоту одного реактора (высоту слоя жидкости в реакторе) рекомендуется принимать при двух последовательно работающих реак­торах в пределах 2,5—2,8 м.

Необходимое количество озона, кг/сутки, определяется по формуле

QC

D03 = ——, (5.25)

03 1000 . V )

Где Q—расход воды, обрабатываемой озоном, м3/сутки;

С — необходимая доза озона, г/м3.

Количество озонаторов определяется исходя из производительности серийно выпускаемых озонаторов

« = (5.26)

<7оз

Где D03 — необходимое количество озона для обработки сточной воды, кг/ч;

9оз — производительность одного озонатора, кг/ч; г| — коэффициент запаса, принимаемый равным 1,05—1,1.

Расход электроэнергии на синтез озона, без учета затрат на вспомо­гательные процессы, при условии использования в качестве сырья ат­мосферного воздуха, составляет в среднем 18 кВт-ч на 1 кг озона. В случае применения кислорода в качестве сырья для синтеза озона за­траты электроэнергии снижаются вдвое.

Рассмотренная технологическая схема предусматривает использова­ние очищенной воды для производственного водоснабжения или спуск озонированных сточных вод в водоем с гарантией сохранения его чисто­ты, так как полностью обеспечиваются санитарные требования по всем показателям.

Озонирование пока не получило широкого применения из-за его сравнительно высокой стоимости, что обусловлено в основном низким выходом озона на современных генераторах. Усовершенствование техни­ки получения озона и более полное его использование снизят энергети­ческие затраты на производство озона и повысят экономическую эффек­тивность процесса в целом.

Нейтрализация. Производственные сточные воды многих отраслей промышленности содержат кислоты и щелочи. Интенсивность кислотной или щелочной реакции воды определяется показателем концентрации водородных ионов — значением рН. Для предупреждения коррозии ма­териалов канализационных сооружений и нарушения биохимических процессов, происходящих в очистных сооружениях и в водоемах, такие воды подвергаются нейтрализации. Нейтрализация нередко производит­ся также в целях осаждения из сточных вод солей тяжелых металлов.

Во всех случаях учитывают возможность взаимной нейтрализации кислот и щелочей, сбрасываемых со сточными водами, а также щелоч­ной резерв бытовых сточных вод и нейтрализующую способность во­ды водоемов. Практически нейтральной принято считать смесь с величи­ной рН в пределах 6,5—8,5, поэтому сточные воды, рН которых ниже 6,5 или выше 8,5, перед отведением в городскую канализацию или в водоем подлежат нейтрализации.

Процесс нейтрализации осуществляется в нейтрализаторах проточно­го или контактного типа, которые могут конструктивно объединяться с отстойниками.

При благоприятных местных условиях осветление нейтрализованной сточной воды может производиться в накопителях, рассчитываемых на хранение в них осадка в течение 10—15 лет.

Выбор способа осветления (в отстойниках, осветлителях или накопи­телях) производится на основе технико-экономических расчетов.

Объем выпадающего осадка зависит от концентрации в нейтрализу­емой сточной воде кислоты и ионов тяжелых металлов, а также от вида и дозы реагента, от полноты осветления и т. д. Наибольшее количество осадка выпадает при нейтрализации сточной воды известковым моло­ком, приготовленным из товарной извести, которая содержит 50% ак­тивной окиси кальция.

Количество осадка, образующегося при нейтрализации 1 м3 сточной воды, содержащей свободную серную кислоту и соли тяжелых метал­лов, ориентировочно можно определить по формуле

М = 100 ~а- (Xl + Хг) + + (У І + *V - 2), (5.27)

Где М—количество сухого вещества, кг/м3;

Хг — количество активной СаО, необходимой для осаждения ме­таллов, кг/м3;

Х2—количество активной СаО, необходимой для нейтрализации свободной серной кислоты, кг/м3;

Х3 — количество образующихся гидроксидов металлов, кг/м3;

Yx — количество сульфата кальция, образующегося при осаждении металлов, кг/м3;

У2 — количество сульфата кальция, образующегося при нейтрализа­ции свободной серной кислоты, кг/м3; а — содержание активной СаО в используемой извести, % (третий член в формуле не учитывается, если значение его отрицатель­но) .

Объем осадка, образующегося при нейтрализации 1 м3 сточной воды, определяется по формуле

т

(5.28)

100- Рвл'

Где Рос — объем осадка, выделившегося из 1 м3 нейтрализуемой во­ды, %;

РБЛ —влажность осадка, %. При нейтрализации солянокислых сточных вод травильных отделе­ний протекают следующие реакции:

Известковым молоком, тестом и сухой молотой известью:

4НС1+Са(0Н)8+СаС0з->2СаС0з+С0г+ЗН20;

2FeCl2+Ca(0H)3+CaC03->Fe(0H)3+FeC03-f2CaCl2;

Содопоташной смесью:

4HCl+Na2C03+K2C03->2NaCl+2KC14-2C024-2h40;

2FeCl2+NaaC03 - f-K2C03 ->2FeC03+2NaCl+2KCl;

Кальцинированной содой:

2HCl+Na2C03->2NaCl+C02+h30;

FeCl2-fNa2C03^FeC03-f2NaCl;

Гидроксидом натра:

НС 1-f NaOH->NaC 1 - f НаО; FeCla+2NaOH->Fe(OH)a+2NaCl.

В результате нейтрализации в осадок выпадает только железо в ви­де гидрата закиси или в виде карбоната.

Гидрат закиси железа имеет зеленую окраску, растворимость его со­ставляет 4,5-Ю-4 г/л. Карбонат железа выпадает в виде серого осадка. Во влажном состоянии он быстро зеленеет, а затем буреет вследствиегидролиза и окисления с образованием гидроксида железа. Раствори­мость карбоната железа 5,79-10-4 г/л. Остальные продукты нейтрализа­ции, а также избыток вводимых реагентов остаются в растворе, повы­шая солесодержание нейтрализованных стоков.

На основании стехиометрических соотношений реакций нейтрализа­ции необходимые дозы реагентов могу

msd.com.ua

Химические методы очистки сточных вод

Химические методы очистки сточных вод. Окислительные методы. Их достоинства и недостатки.

Химические методы очистки сточных вод. Нейтрализация кислот и оснований.

К химическим методам очистки сточных вод относят нейтрализацию, окисление и восстановление. Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие pH 6,5. 8,5. Нейтрализацию можно проводить различным путем: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы, абсорбцией кислых газов щелочными водами или абсорбцией аммиака кислыми водами. В процессе нейтрализации могут образовываться осадки.

Химические методы очистки сточных вод. Экстрагирование.

К химическим методам очистки сточных вод относят нейтрализацию, окисление и восстановление. Экстракционный метод очистки производственных сточных вод основан на распределении загрязняющего вещества в смеси двух взаимно нерастворимых жидкостей, в зависимости от его растворимости в них. В процессе экстракции экстрагент вводят в обрабатываемую воду. Метод целесообразно применять при относительно высоком содержании в сточных водах растворенных органических веществ, представляющих техническую ценность (фенолы, жирные кислоты)( на предприятиях по термической переработке каменного и бурого углей).

Химические методы очистки сточных вод. Окислительные методы. Их достоинства и недостатки.

К химическим методам относят нейтрализацию и окисление. Химическую очистку проводят как предварительную перед биологической очисткой или после нее как метод доочистки сточных вод. Нейтрализация применяется для обработки производственных сточных вод, содержащих щелочи и кислоты.

Окислительный метод очистки применяют для обезвреживания производственных сточных вод, содержащих токсичные примеси (цианиды, комплексные цианиды меди и цинка) или соединения, которые целесообразно извлекать из сточных вод, а также очищать другими методами (сероводород, сульфиды). В качестве окислителей используют газообразный и сжиженный хлор, гипохлорит кальция и натрия, хлорную известь, диоксид хлора, озон, технический кислород и кислород воздуха и др. В процессе окисления токсичные загрязнения, содержащиеся в сточных водах, в результате химических реакций переходят в менее токсичные, которые удаляют из воды.

6. Обеззараживание воды: хлором и хлоросодержащими веществами, фтором и йодом, озоном, ультразвуком, ультрафиолетовыми лучами, иона серебра. Термическое обеззараживание. Достоинства и недостатки.

Хлорирование воды — обработка воды хлором и его соединениями. Наиболее распространённый способ обеззараживания питьевой воды; основан на способности свободного хлора и его соединений угнетать ферментные системы микробов, катализирующие окислительно-восстановительные процессы.

В чем польза хлорирования воды

Широкому распространению хлора в технологиях водоподготовки способствовала его эффективность при обеззараживании природных вод и способность консервировать уже очищенную воду длительное время. Кроме того, предварительное хлорирование воды позволяет снизить цветность воды, устранить ее запах и привкус, уменьшить расход коагулянтов, а также поддерживать удовлетворительное санитарное состояние очистных сооружений станций водоподготовки.

Эффективность, доступность и умеренная стоимость, а так же большой опыт работы с этим реагентом обеспечили хлору исключительную роль — более 90% водопроводных станций в мире обеззараживают и обесцвечивают воду хлором, расходуя до 2 млн тонн этого жидкого реагента в год.

Можно применять два способа фторирования воды:

1) круглогодичный одной дозой;

2) посезонный: зимней и летней дозой.

В первом случае в воду в течение всего года добавляют постоянную дозу фтора, соответствующую климатическому району, в котором расположен населенный пункт. При меняющейся по сезонам дозе в холодное время года, когда среднемесячная температура воздуха (в 13 ч) не превышает 17-18 °, воду можно фторировать дозой на уровне 1 мг/л, а в теплое время (например, в июне — августе) — меньшей дозой, зависящей от средней максимальной температуры (в 13 ч) за эти месяцы, например, при температуре 22-26 °С берут дозу 0,8 мг/л фтор-иона, при 26-30 °С и более — 0,7 мг/л фтор-иона. Посезонный метод фторирования более приемлемый.

Для УФ обеззараживания воды сегодня применяются волны довольно узкого диапазона — от 250 до 270 нм. В этих рамках бактерицидное воздействия ультрафиолета приобретает свое максимальное значение. Большая часть установок по обеззараживанию воды ультрафиолетом использует лампы низкого ртутного давления, которые производят излучение длиной в 260 нм, то есть оптимальную длину волны. При работе на этой длине волны происходит умягчение воды.

Ультрафиолетовое обеззараживание воды происходит при помощи способности УФ излучения проникать сквозь стенки клетки, добираясь до ее информационного центра — нуклеиновых кислот ДНК и РНК. В ДНК живой клетки хранится вся информация, которая контролирует процесс развития и нормального функционирования в клетке. Ультрафиолетовое обеззараживание воды заключается в поглощении лучей излучения нуклеиновыми кислотами. При поглощении излучения ДНК и РНК теряют способность делится, вследствие чего теряется способность клетки к размножению, так как именно в разделении нуклеиновых кислот заключается репродукция клетки.

Болезнетворные микроорганизмы способны нанести вред человеческому организму только в случае их размножения в организме, при обеззараживании воды ультрафиолетом эта способность утрачивается и, как следствие, любой негативный эффект микроорганизмов исключается.

Ультразвуковые волны – это колебания высокой частоты. Чаще всего используется порог 20 кГц. Этот уровень определяется границей слышимости человеческого уха. Очистка и обеззараживание воды ультразвуком работает при кавитации, возникновении в объеме большого количества образованных газом пузырьков. При их быстром росте и последующем разрушении в жидкой среде возникают резкое локальное увеличение давления и температуры. Именно эти воздействия используются для получения необходимых результатов.

Они разрушают оболочки микроорганизмов, твердые примеси, осевшие в виде слоев на поверхностях труб, иных деталей и узлов. Дополнительные полезные функции выполняют образующиеся при кавитации активные радикалы. Эти соединения ускоряют процессы окисления. При создании излучателя соответствующего типа следует учитывать, что не следует чрезмерно увеличивать частоту. Кавитация происходит интенсивнее в диапазоне от 18 000 до 50 000 Гц. Чтобы обеззараживание жидкости было эффективным необходимо обеспечить высокую плотность поля, от 1,5 до 2 Вт на 1 см. куб. объема. Также потребуется высокая мощность для разрушения слоев механических загрязнений.

Самым старым методом обеззараживания воды является ее кипячение. Этот метод применяется для очистки небольших количеств воды. Его используют для обеспечения обеззараженной питьевой воды столовых, лечебных и административных учреждений и т. д. Однако вследствие высокой стоимости и громоздкости необходимых установок кипячение воды не применяется для обеззараживания воды даже на малых водопроводах. Термическим методом нельзя удалить из воды споры, поэтому вода из сомнительных источников не может обеззараживаться кипячением

© 2015-2017 lektsii.org.

Методы очистки воды

Методы очистки сточных вод обычно классифицируют по характеру основных процессов, на которых они основаны. По этому признаку их подразделяют на механические, химические, физико-химические и биологические или биохимические.

1 .Использование физических методов приводит лишь к изменению формы, размеров, агрегатного состояния и других физических свойств. При этом в последних не исчезают прежние и не возникают какие-либо новые вещества. Физические методы обеспечивают выделение из сточных вод до 95-99% взвешенных веществ и снижают органические загрязнения на 20-25%. Их разделяют на методы процеживания, отстаивания, центрифугирования и фильтрации. В качестве основного оборудования в них применяют различные модификации решеток, сит, отстойников, центрифуг, гидроциклонов и фильтров.

2.Химические методы применяют для удаления из сточных вод растворимых загрязнителей, используя различные реагенты. При взаимодействии с примесями последние образуют безвредные соединения или малорастворимые осадки, в состав которых переходят элементы вредных веществ. Таким образом, изменяются не только физические, но и химические свойства подвергаемых очистке систем. Основными методами химической очистки являются нейтрализация, окисление и восстановление.

Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие рН=6,5-8,5. Нейтрализацию можно проводить различным путем: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы и абсорбцией кислых газов щелочными водами. Выбор метода нейтрализации зависит от объема и концентрации сточных вод, наличия и стоимости реагентов.

1.Нейтрализация смешением. Этот метод применяют, если на предприятии имеются кислые и щелочные воды, не загрязненные другими компонентами. Кислые и щелочные воды смешивают в специальной емкости с мешалкой и без неё. В последнем случае перемешивание ведут воздухом.

2.Нейтрализация путем добавления реагентов. Для нейтрализации кислых вод могут быть использованы: NaOH, КОН, Na2 CO3. СаСО3. цемент и гидроксид кальция (известковое молоко) с содержанием активной извести Са(ОН)2 5—10%. Реагенты выбирают в зависимости от состава и концентрации кислой сточной воды. При этом учитывают, будет ли в процессе образовываться осадок или нет.

3.Нейтрализация фильтрованием кислых вод через нейтрализующие материалы. В этом случае для нейтрализации кислых вод проводят фильтрование их через слой магнезита, доломита, известняка, твердых отходов (шлак, зола). Процесс ведут в фильтрах-нейтрализаторах, которые могут быть горизонтальными или вертикальными.

4.Нейтрализация кислыми газами. Для нейтрализации щелочных сточных вод используют отходящие газы, содержащие СО2. SO2. NO2. N2 O3. Применение кислых газов позволяет не только нейтрализовать сточные воды, но и одновременно производить высокоэффективную очистку самих газов от вредных компонентов.

Для очистки сточных вод используют следующие окислители: газообразный и сжиженный хлор, диоксид хлора, хлорат кальция, пероксид водорода, кислород воздуха, озон и др. В процессе окисления токсичные загрязнения, содержащиеся в сточных водах, в результате химических реакций переходят вменее токсичные, которые удаляют из воды.

1.Окисление хлором. Хлор и вещества, содержащие «активный» хлор, являются наиболее распространенными окислителями. Их используют для очистки сточных вод от сероводорода, гидросульфида, фенолов, цианидов и др.

2.Окисление пероксидом водорода. Пероксид водорода является бесцветной жидкостью, в любых соотношениях смешивается с водой. Он может быть использован для окисления нитритов, цианидов, серо- и железосодержащих отходов и активных красителей.

В кислой среде пероксид водорода переводит соли двухвалентного железа в соли трехвалентного, азотистую кислоту — в азотную, сульфиды — в сульфаты. Цианиды в цианаты окисляются в щелочной среде (рН=9—12).

3.Окисление кислородом воздуха. Кислород воздуха используют при очистке воды от железа для окисления соединений двухвалентного железа в трехвалентное с последующим отделением от воды гидроксида железа. Образующийся гидроксид железа отстаивают в контактном резервуаре, а затем отфильтровывают.

Кислородом воздуха окисляют также сульфидные стоки целлюлозных, нефтеперерабатывающих и нефтехимических заводов.

4.Окисление озоном позволяет одновременно обеспечить обесцвечивание воды, устранение привкусов, запахов и обеззараживание. Озонированием можно очищать сточные воды от фенолов, нефтепродуктов, сероводорода, соединений: мышьяка, ПАВ, цианидов, красителей, канцерогенных ароматических углеводородов, пестицидов и др. При обработке воды озоном происходит разложение органических веществ и обеззараживание воды; бактерии погибают в несколько тысяч раз быстрее, чем при обработке воды хлором.

При введении озона в воду идут два основных процесса — окисление и дезинфекция. Кроме того, происходит значительное обогащение воды растворенным кислородом.

Процесс очистки сточных вод значительно сокращается при совместном использовании ультразвука и озона, ультрафиолетового облучения и озона. Так, ультрафиолетовое облучение ускоряет окисление в 10 2 —10 4 раз.

ΙΙΙ.Очистка восстановлением. Методы восстановительной очистки сточных вод применяют в тех случаях, когда они содержат легко восстанавливаемые вещества. Эти методы широко используют для удаления из сточных вод соединений ртути, хрома, мышьяка.

а)в процессе очистки неорганические соединения ртути восстанавливают до металлической ртути, которую отделяют от воды отстаиванием или фильтрованием. Органические соединения ртути сначала окисляют с разрушением соединения, затем катионы ртути восстанавливают до металлической ртути. Для восстановления ртути и ее соединений предложено применять сульфид железа, железный порошок, сероводород и др.

б)наиболее распространенным способом удаления мышьяка из сточных вод является осаждение его в виде труднорастворимых соединений. При больших концентрациях мышьяка (до 110 г/л) метод очистки основан на восстановлении мышьяковой кислоты до мышьяковистой диоксидом серы.

в)метод очистки сточных вод от веществ, содержащих шестивалентный хром, основан на восстановлении его до трехвалентного с последующим осаждением в виде гидроксида в щелочной среде. В качестве восстановителей используются активный уголь, сульфат железа, водород, диоксид серы.

3.Физико-химические методы основаны на явлениях химического характера, получающих развитие под влиянием изменения термодинамических параметров (давление, объем, температура), эти способы очистки базируются на совокупности явлений, пограничных между физическими и химическими. Физико-химические методы пригодны для осаждения токсичных металлов и их солей, удаления масел и суспендированных веществ, осветления стоков. Выбор конкретного способа определяется свойствами и количеством стоков (коагуляция и флокуляция).

4.Биохимические способы очистки в настоящее время нашли широкое применение для очистки как хозяйственно-бытовых, так и промышленных сточных вод от многих растворенных органических и неорганических веществ, которые используются микроорганизмами в качестве питательных веществ и источников энергии и при этом подвергаются окислению с образованием воды и СО2 при аэробной и восстановительным процессам с образованием метана при анаэробной очистке. В процессе питания микроорганизмов происходит прирост их массы. В сообщество микроорганизмов входит множество различных бактерий, простейших и ряд более высокоорганизованных микроорганизмов (микроводорослей, грибов и дрожжей). Основная роль в сообществе принадлежит бактериям, число родов которых может достигать 5-10, а видов — несколько десятков и даже сотен. Масса микроорганизмов создает так называемый активный ил с концентрацией до 2-5 г/л сточных вод.

Возможность биохимического окисления определяется по отношению, называемому биохимическим показателем. (БПКполн/ХПК)•100,%.

БПКПОЛН — потребление кислорода до начала процессов нитрификации, т.е. окисления нитритов до нитратов.

ХПК — величина, характеризующая общее количество органических и неорганических восстановителей, реагирующих со всеми окислителями, находящимися в сточной воде. Если это отношение равно 50%, то вещества будут поддаваться биохимическому окислению.

Известны два вида процессов с участием микроорганизмов: окислительные (аэробные) в присутствии кислорода, наиболее распространенные в очистке сточных вод. Аэробный метод очистки основан на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40 градусов. При аэробном методе очистки микроорганизмы культивируются в виде активного ила или биопленки.

Восстановительные (анаэробные) методы протекают в отсутствие кислорода и используются для сбраживания осадков.

Аэробные процессы биохимической очистки могут протекать в природных условиях и в искусственных сооружениях.

1.В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах.

а)Поля орошения. Это специально подготовленные земельные участки, используемые одновременно для очищения сточных вод и агрокультурных целей. Очистка сточных вод в этих условиях идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

В процессе биологической очистки сточные воды проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя в порах грунта пленку. Затем образовавшаяся пленка адсорбирует коллоидные частицы и растворенные в сточных водах вещества. Проникающий из воздуха в поры кислород окисляет органические вещества, превращая их в минеральные соединения.

Серьезной проблемой использования полей орошения может явиться загрязнение почвы и заражение растений патогенными бактериями и яйцами гельминтов.

б) Если на полях не выращиваются сельскохозяйственные культуры и они предназначены только для биологической очистки сточных вод, то их называют полями фильтрации. Недостатки — большая площадь, возможность загрязнения подземных вод и воздуха газообразные продуктами разложения /запах — на 200 м/.

в)Биологические пруды — представляют собой каскад прудов, состоящий из 3—5 ступеней, через которые с небольшой скоростью протекает сточная вода. Пруды имеют небольшую глубину (0,5-1 м), хорошо прогреваются солнцем и заселены водными организмами. Бактерии используют для окисления загрязнений кислород, выделяемый водорослями в процессе фотосинтеза, а также кислород из воздуха. Водоросли, в свою очередь, потребляют СО2. фосфаты и аммонийный азот, выделяемые при разложении органических веществ.

К недостаткам этих сооружений следует отнести низкую окислительную способность, сезонность работы, потребность в больших территориях, затрудненность очистки, трудно подобрать состав микроорганизмов, поддерживать их концентрацию на нужном уровне, микроорганизмы часто гибнут.

2.Искусственными сооружениями являются аэротенки и биофильтры при аэробной очистке и метатенки при анаэробной. В искусственных сооружениях процессы очистки протекают с большей скоростью, чем в естественных условиях.

1.Очистка в биофильтрах. Биофильтры — сооружения, в корпусе которых размещается кусковая насадка (загрузка) и предусмотрены распределительные устройства для сточной воды и воздуха. В биофильтрах сточная вода фильтруется через слой загрузки, покрытый пленкой из микроорганизмов (биопленкой). Биопленка представляет собой слизистые образования толщиной от 2 мм и более. Биопленка состоит из бактерий, грибов, дрожжей и простейших.

Микроорганизмы биопленки окисляют органические вещества, используя их как источники питания и энергии. Таким образом, из сточной воды удаляются органические вещества, а масса активной биопленки увеличивается. Отработанная (омертвевшая) биопленка смывается протекающей сточной водой и выносится из биофильтра. В качестве загрузки используют различные материалы с высокой пористостью, малой плотностью и большой удельной поверхностью: щебень, гравий и шлак.

2.Очистка в аэротенках. Аэротенки представляют собой резервуары, в которых сточная вода смешивается с комплексом развивающихся микроорганизмов, образующих легко оседающие хлопья -активный ил, и насыщается воздухом или кислородом с помощью различных систем аэрации. Аэрация обеспечивает эффективное смешение сточных вод с активным илом, подачу в иловую смесь кислорода и поддержание ила во взвешенном состоянии. В процессе окисления органического вещества увеличивается биомасса микроорганизмов и образуется избыточный активный ил. Процесс очистки в аэротенке идет по мере протекания через него аэрированной смеси сточной воды и активного ила. Аэрация необходима для насыщения воды кислородом и поддержания ила во взвешенном состоянии.

3.Анаэробные методы обезвреживания используют для сбраживания осадков, образующихся при биохимической очистке производственных сточных вод. Для очистки сточных вод используют метановое брожение, которое состоит из двух фаз: кислой и щелочной. В кислой фазе из сложных органических веществ образуются низшие жирные кислоты, спирты, аминокислоты, аммиак, сероводород, диоксид углерода и водород. Изэтих промежуточных продуктов в щелочной фазе образуются метан и диоксид углерода. Процесс брожения проводят в метантенках — герметически закрытых резервуарах, оборудованных приспособлениями для ввода несброженного и отвода сброженного осадка.

К недостаткам относится медленный рост анаэробных, особенно метановых, бактерий.

Химические способы очистки воды

Очищать воду от вредных примесей необходимо в обязательном порядке. В противном случае вода вместо своей целебной восстанавливающей организм силы проявит исключительно негативные характеристики. Так, неочищенная или некачественно очищенная вода может стать смертельным ядом для человеческого организма. Тем более необходимо очищать сточные воды перед их сбросом в водоемы. Для освобождения жидкости от различных вредных включений используются различные методы и способы, в зависимости от физического состояния примесей. Но, если же, вредные вещества в воде находятся в большей степени в растворенном состоянии, то применяется химическая очистка воды.

Важно: химический метод очистки жидкости широко применим при очистке сточных вод, как промежуточный этап перед её биологической или механической обработке.

Принципы выполнения химической очистки

Абсолютно все химические способы очистки воды работают по одному и тому же принципу

Абсолютно все химические способы очистки воды работают по одному и тому же принципу — добавление в грязную воду химических элементов (реагентов) с целью преобразования растворенных веществ во взвешенное состояние. Только после этого их можно будет качественно удалить из имеющегося объема жидкости.

Важно: химочистка воды способна освободить воду на 95% от всех примесей во взвешенном состоянии и на 25% от примесей растворенных.

Для выполнения очистки воды химическим способом применяются три распространенных типа реагентов:

  • Окислители. В качестве реагентов здесь используют озон, перманганат калия (марганец) и хлор.
  • Щелочные реагенты в виде извести, соды или гидроксида натрия.
  • Кислотные реагенты — соляная и серная кислоты.

При этом концентрация взвесей в грязной воде может находиться в диапазоне от 1 мг/литр до 30 гр/литр.

Важно: химические методы очистки воды применяются в основном на промышленных предприятиях. Работать с реагентами в домашних условиях крайне опасно.

Способы очистки воды химическими методами

Нейтрализация

Этот метод очистки направлен на полную нейтрализацию всех патогенных микроорганизмов и других включений

Этот метод очистки направлен на полную нейтрализацию всех патогенных микроорганизмов и других включений, а также на выведение уровня pH воды на нормативные показатели в пределах 6,5-8,5.

Процесс нейтрализации при очистке сточных вод может выполняться несколькими способами. Так, самые часто применимые — такие:

  • Процесс смешивания между собой кислых и щелочных сред в виде жидкости;
  • Добавление химических реагентов в стоки;
  • Фильтрация сточных вод с кислотным содержимым при использовании нейтралиузющих реагентов;
  • Нейтрализация любых газов в сточной воде при помощи щелочных реагентов;
  • Добавление в стоки с кислотным содержимым аммиачного раствора. Здесь же для нейтрализации кислот в воде можно применять цемент; гидроксид кальция и доломит.

Окисление грязной воды

Метод окисления применяется для стоков в том случае, если при отстаивании и механической чистке воды примеси не удаляются

Метод окисления применяется для стоков в том случае, если при отстаивании и механической чистке воды примеси не удаляются. В качестве реагентов используются:

  • Бихромат калия.
  • Озон. Этот реагент хоть и является качественным и отлично очищает воду, все де используется крайне редко ввиду высокой стоимости процесса очистки. Но при этом стоит знать, что озонирование позволяет очистить воду от ПАВ, любых нефтепродуктов, от красителей и мышьяка, от канцерогенных включений и от фенолов с цианидами.

Важно: помимо высокой стоимости процесса озон также не используется при очистке сточных вод по причине его взрывоопасности при условии наличия его в большом объеме.

  • Хлор в состоянии газа или в сжиженном состоянии (при этом вода впоследствии должна дополнительно дехлорироваться, поскольку доказано, что хлор вступает в реакцию с компонентами воды и образует таким образом вредную хлорволокнистую кислоту или соляную кислоту).
  • Хлорат кальция или диоксид хлора.
  • Кислород воздуха, пиролюзит и др.

После процесса окисления все микроорганизмы и патогенные бактерии полностью погибают под воздействием добавленных в стоки реагентов.

Процесс восстановления как метод очистки воды

Этот метод работает по принципу восстановления всех включений до своего первоначального физического состояния

Этот метод работает по принципу восстановления всех включений до своего первоначального физического состояния с целью последующего их удаления из воды с помощью одного их физико-химических методов:

В основном такой метод применяется для очистки жидкости от частиц мышьяка, ртути и хрома. В качестве реагентов здесь применяют:

  • Сульфат железа;
  • Диоксид серы;
  • Активированный уголь, водород и пр.

Физико-химическая обработка воды

Такие методы обработки и очистки грязной воды являются неотъемлемой частью борьбы с вредными включениями при очистке стоков

Такие методы обработки и очистки грязной воды являются неотъемлемой частью борьбы с вредными включениями при очистке стоков. Самыми основными из них являются:

  • Коагуляция примесей. Такой метод очистки сточных вод чаще всего используется на текстильной промышленности, химической, целлюлозной и легкой промышленности. Принцип воздействия реагентов на грязную воду заключается в том, чтобы преобразовать все включения в форму хлопьев. Затем такой взвешенный осадок удаляется при отстаивании или фильтровании. При использовании метода коагуляции эффективность очистки стоков равна 90-95%.

Важно: также для грязной воды может использоваться и метод электрокоагуляции, когда в воду помещают токопроводники и пропускают ток через водную массу.

Адсорбция воды

Этот способ позволяет адсорбентам поглотить все вредные включения непосредственно в воде

Этот способ позволяет адсорбентам поглотить все вредные включения непосредственно в воде. В основном метод адсорбции для очистки сточных вод применим против пестицидов, гербицидов, красителей, ПАВ и фенолов в воде. Также при помощи адсорбции удаляются все ароматические примеси.

Различают два основных и часто используемых вида адсорбции:

  • Дегенеративный. В этом случае все вредные включения убиваются вместе с введенным в воду адсорбентом.
  • Регенеративный. Здесь вредные примеси можно в дальнейшем извлечь из введенного в воду адсорбента и утилизировать отдельно.

Адсорбирующими реагентами являются:

  • Силикагель и торф;
  • Зола, активная глина и пр.

Стоит отметить, что эффективность приведенного метода составляет 90-95%, но полностью зависит от следующих факторов:

  • Концентрация имеющихся вредных примесей в очищаемой воде;
  • Тип используемого реагента-адсорбента;
  • Общая площадь стоков, обрабатываемых методом адсорбции;
  • Общая глубина очищаемого объема воды.

Метод флотации

В этом случае для очистки сточных вод используют метод, в котором при помощи воздействия на них воздуха под высоким давлением удается удалить все взвеси

В этом случае для очистки сточных вод используют метод, в котором при помощи воздействия на них воздуха под высоким давлением удается удалить все взвеси. То есть воздух нагнетается в воду либо через турбины на дне водного резервуара, либо через трубы сверху. Нагнетенный в воду воздух вспенивает жидкость. При этом воздух вступает в реакцию с молекулами примесей и поднимает все взвеси в пенный слой. Далее все примеси с поверхности воды удаляются при помощи специальных установок.

Важно: метод флотации особенно востребован в том случае, если в воде имеются нефтепродукты, масла и любые волокнистые включения.

Ионный обмен в воде

Здесь в воду вводят ионы ионита, что приводит к взаимодействию последних с молекулами примесей. При возникновении реакции молекулы вредных веществ отделяются от воды, что позволяет качественно их удалить. Как правило, метод ионного обмена применяют для очистки воды от ртути и мышьяка, хрома и цинка, свинца и меди.

Экстракция загрязнителей воды

Данный способ применим при очистке воды в том случае, если примеси, растворенные в воде, имеют техническую или химическую ценность и могут быть использованы впоследствии

Данный способ применим при очистке воды в том случае, если примеси, растворенные в воде, имеют техническую или химическую ценность и могут быть использованы впоследствии. Метод основывается на выведении из состава грязной воды фенолов и жирных кислот. Как правило, для очистки воды таким способом в стоки вводят специальный экстрагент, который полностью концентрирует примеси в воде. Затем экстрагент с примесями удаляют из воды и отделяют один от другого. Стоит знать, что экстрагент можно использовать повторно.

Важно: все приведенные выше способы очистки воды при помощи реагентов являются потенциально опасными для рядового обывателя и не могут применяться в домашнем водоснабжении. Поэтому экспериментировать с эти не рекомендуется.

Источники: http://lektsii.org/16-54121.html, http://studopedia.ru/3_191167_metodi-ochistki-vodi.html, http://vodakanazer.ru/vodopodgotovka/ochistka-i-filtraciya-vody/ximicheskaya-ochistka-vody.html

septikman.ru


.