Геотермальная электростанция преимущества и недостатки. Геотермальная энергия плюсы и минусы


10 причин для использования геотермальной энергии

10 причин для использования геотермальной энергииНаука

Мировое сообщество потребляет невероятное количество энергии. Сжигание ископаемого топлива – это ведущий источник выбросов парниковых газов. Поиск надежных и возобновляемых источников энергии является ключом к счастливому будущему. И тут геотермальная энергия самое, что ни на есть, то.

Значение термина "геотермальная энергия" может быть объяснено просто, поскольку оно происходит от греческого слова "гео", то есть земля и "термо", то есть тепло. Тепло находится непосредственно над поверхностью Земли, что делает его уникальным ресурсом. Наиболее активные геотермальные «пятна» расположены около "работающих" вулканов, но они также возникают там, где находятся горячие источники, гейзеры и геотермальные резервуары. Ниже объясняется, почему геотермальная энергия является жизнеспособным решением для относительно быстрого разрешения глобального кризиса.

Она возобновляема

Геотермальная энергия собирается посредством использования горячей воды и пара с поверхности земли. Эта вода и пар известны, как гидротермальная энергия. Геотермальная энергия считается безграничным источником. Ее тепло исходит из ядра земли 24 часа в день, 365 дней в году. Количество тепла, которое в настоящее время используется, ничтожно мало по сравнению с тем, которое содержится в недрах земли, поэтому при ее сборе практически невозможно оказать какое-либо существенное влияние на внутреннюю температуру планеты. Проще говоря, это неиссякаемый источник тепла. До тех пор, пока ядро планеты не станет холодным, можно с уверенностью говорить о том, что геотермальная энергия является полностью возобновляемым источником.

Она удобна в применении

Несмотря на то, что легче всего найти геотермальную энергию возле действующих вулканов, на самом деле геотермальное тепло расположено практически повсюду. Это лишь одна из причин, почему она удобна. Вот еще одна: эта энергия есть всегда, то есть ее выработка не зависит от таких факторов, как солнце или ветер для генерирования своей силы. Не менее важная причина ее удобства состоит в том, что данный тип энергии не нужно импортировать.

Чистые электростанции

Существует три основных типа электростанций, работающих на геотермальной энергии: электростанции сухого пара, пара-вспышки и бинарные. При этом станции обеспечивают максимальную производительность при минимальном воздействии на окружающую среду. Каждая из них использует различные, но связанные между собой энергетические турбины, которые, в свою очередь, вырабатывают электричество без выброса тонн токсинов в атмосферу.

Геотермальная энергия имеет множество сфер применения

Вы можете быть удивлены, узнав, что фермеры и сельскохозяйственные работники были первыми, кто начал применять геотермальную энергию. Итальянские фермеры в течение нескольких сот лет использовали ее для нагрева воды под зимние культуры. Геотермальная энергия также используется для обогрева теплиц и увлажнения. Фермеры использовали ее для укрепления молочных пастеризаторов и для нагревания воды на рыбных фермах. В США уже более века геотермальная энергия обогревает большое количество домов, бассейнов во дворе и коммерческих зданий. Муниципалитеты используют ее для того, чтобы растопить лед на тротуарах и дорогах. Это сокращает количество снегоуборочной и шлифовальной техники, за счет чего экономятся деньги, и снижается потребление ископаемого топлива.

Геотермальная энергия – это экономия средств

Вряд ли кому нравится выбрасывать деньги на ветер. Но если система отопления и охлаждения в вашем доме является неэффективной, то это именно то, что вы делаете. Геотермальные тепловые насосы помогут решить проблему и сохранить деньги.

Геотермальные тепловые насосы – это теплодвигатели. Зимой они собирают тепло и передают его холодным областям. Обратное происходит в летнее время. Они очень эффективны, снижают расходы, и, что не маловажно, не происходит никаких вредных выбросов в окружающую среду. В каждом из теплодвигателей находится компонент, который называется "пароохладитель". Летом пароохладитель использует тепло вашего дома для того, чтобы нагреть воду. Что же в этом хорошего? Бесплатная горячая вода все лето!

У нее хорошие перспективы

Геотермальная энергетика быстро становится приемлемой альтернативой на энергетической сцене. С 2005 по 2010 года данная индустрия показала значительный рост в размере 4,25 процента каждый год. Технологический прогресс способствует продвижению геотермальной энергии на новые высоты. Расширенные геотермальные системы (EGS) значительно увеличивают возможности фабрик и заводов. Эти системы используют сухие породы, находящиеся в глубине Земли для извлечения тепла.

Не только развитые страны пользуются преимуществами геотермальной энергии. К примеру, у филиппинцев 23 процента всей энергии – это именно данный тип энергии, причем к 2013 году они планируют увеличить производство до 60 процентов. В Африке Кения также использует потенциал геотермальной энергии в Великой Рифтовой Долине (Great Rift Valley).

Стоит отметить, что геотермальная энергия – это не просто более чистая энергия, а это также создание новых рабочих мест. По данным американского совета по защите природных ресурсов, развитие геотермальных источников энергии создаст около 100000 рабочих мест в Соединенных Штатах. Инженеры, строители (сварщики, слесари, монтажники и т.д.), архитекторы, ученые – это лишь небольшой перечень специалистов, наличие которых необходимо для исследования, проектирования и строительства геотермальных станций.

Не требует использования гидроэнергетики

Гидроэнергетика используется уже около 2000 лет. Семь процентов электроэнергии США производится именно по этому методу. Она считается относительно чистым способом, когда речь идет о выбросах и парниковых газах, однако, все же у нее есть недостаток: гидроэлектростанции используют для выработки энергии водные ресурсы рек. Подобная переработка воды нарушает нерест рыбы, а также вредит флоре и фауне.

В отличие от ГЭС, геотермальные станции не вредят водным путям при производстве электроэнергии. Горячая вода и пар лежит ниже поверхности земли и обрабатывается в замкнутых областях. В закрытой геотермальной системе, вода «закачивается» в землю и используется снова позднее. Укрепленные колодцы предотвращают утечку воды, что делает производство геотермальной энергии менее вредным для местных водных источников, а также для людей, растений и животных, живущих рядом.

Она очень надежная

Геотермальная энергия считается очень надежной. Хотя и правда, что производство энергии зависит от имеющихся гидротермальных ресурсов, геотермальные станции всегда находятся в 95-99-процентной эксплуатационной готовности. Что это означает? Если станция имеет разрешение на работу, то это означает непрерывный поток мощности и выработку энергии.

Геотермальная энергия удерживает свои лидирующие позиции по сравнению с другими видами альтернативной энергии. Большим преимуществом геотермальная энергия обладает перед энергией ветра, поскольку она не такая переменчивая, так как Земля является постоянным источником тепла, а ветровые турбины непосредственно зависят от ветра: нет ветра – нет энергии. И даже когда ветер есть, его скорость переменна, а значит, его очень трудно держать под контролем. Аналогичные суждения справедливы и для солнечной энергии, выработка которой провальна в пасмурные дни. Таким образом, риск, что что-то может пойти не так в работе геотермальной станции, минимален. Каждая из геотермальных станций, построенных за последние 100 лет, продолжает работать и в настоящее время.

Влияние на окружающую среду

В США, геотермальные станции должны соответствовать строгим местным, государственным и федеральным законам по защите дикой природы и окружающей среды.

Помимо прочего, геотермальные установки должны соответствовать местным нормам "шумового загрязнения". Таким образом, шум от вентиляторов является минимальным, и было отмечено, что уровень шума можно сопоставить с шелестом листьев ближайших деревьев. Геотермальные станции также разрабатываются с целью создания гармонии с окружающей средой, они не строятся на федерально охраняемых землях. В самом деле, станции часто выстраиваются на землях, которые уже много раз использовались сельским хозяйством или для отдыха.

Чистая форма энергии

Все формы альтернативной энергии определенным образом прямо или косвенно загрязняют окружающую среду. В данном контексте геотермальная энергия самый жизнеспособный и простой вариант, поскольку земля вырабатывает неограниченное количество тепла, а при преобразовании его в энергию загрязнения окружающей среды минимальны. Одним из самых серьезных преимуществ геотермальной энергии является сам производственный процесс. В нем не принимают участие ископаемые виды топлива, такие как нефть, уголь или газ. Станции "питаются" от пара, также стоит отметить, что нет ничего, что нужно было бы привозить дополнительно для работы станции, поскольку все в буквальном смысле находится под ногами.

Перевод: Баландина Е. А.

www.infoniac.ru

Какие экологические преимущества имеет геотермальная электростанция перед ТЭС?

Издавна Земля является источником энергоресурсов, но, признавая этот факт, надо признать и то, что невозобновляемые источники энергии не бесконечны. Ради обогрева жилья люди уже отказались от дров и больше не сжигают леса, почти исключили добычу каменного угля, признавая, что это наносит экологический вред среде обитания. Но добыча нефти и газа идёт полным ходом. Между тем у нашей планеты в запасе есть и возобновляемый источник энергии — сила её геотермальных вод.

Тепло из самых глубин планеты

имеется экологический недостаток ТЭСИспользовать тепло Земли — очень заманчивая идея и непростая, но в целом решаемая, задача. Особенно актуально это для регионов, где геотермальные источники выходят на поверхность или, хотя бы находятся в зоне досягаемости, как с инженерной, так и экономической точек зрения. Вот только местоположение подобных источников, как правило, соседствует с тектоническими разломами планеты и находится в крайне сейсмо неустойчивых регионах.

Перегретый пар и/или вода, способный вращать турбины, с тем, чтобы выработать электроэнергию, — это «побочный продукт» деятельности вулканов и гейзеров. В то же время на планете множество людей живут в опасном соседстве с подобными грозными силами природы. А потому использование этих сил на благо людей, в основном, вопрос времени: с развитием технологии этот вид энергии станет доступнее, возрастёт и мощность геотермальных станций.

Геотермальные электростанции: преимущества и недостатки

Существует несколько принципиальных схем строительства таких электростанций и, обычно, выбор зависит от конкретного источника тепла: где-то достаточно пробурить скважину и можно начинать её эксплуатацию, а где-то предварительно необходимо очистить поступающий энергоноситель от твёрдых частиц и вредных газов.

Но, каков бы ни был принцип работы такой станции, у неё имеется ряд преимуществ перед ТЭС и даже перед тепловой АЭС.

Какие экологические преимущества имеет геотермальная электростанция?Вот недостаток у геотермальной станции всего один: в конечном счёте он сводятся её местоположению. Учитывая, что сейсмическая активность не поддаётся прогнозам, районы тектонических разломов крайне неблагоприятное место для строительства и последующей эксплуатации энергоустановок.

Зато преимущества геотермальных электростанций многочисленны и неоспоримы:

  • безопасность для окружающей среды, в том числе отсутствие возникновения парниковых газов;
  • компактность размеров станции;
  • основные расходы заканчиваются с завершением строительства, расходы же на эксплуатацию — минимальны;
  • за счёт природного теплоносителя (практически неисчерпаемый ресурс!) себестоимость электрической энергии снижается почти до нуля.

Подробнее об экологии

С развитием общества, вырастает и его экологическая сознательность, проблемы разумного природопользования выходят на первый план. Ведущие экономические державы, в том числе и Россия, подписывают протоколы об ограничении выбросов в атмосферу, стремясь сократить вред от парникового эффекта и предотвратить глобальное потепление. ТЭС, использующие для выработки электроэнергии в качестве топлива газ, продукты нефтепереработки и, особенно, каменный уголь оказывают существенное влияние на рост загрязнённости атмосферы.

С тем, что имеется экологический недостаток ТЭС, ничего поделать нельзя. Можно попытаться сократить выбросы за счёт более полного сжигания топлива, за счёт применения передовых фильтрующих систем, но от «родового» недостатка тепловой энергетики не уйти.

преимущества геотермальных электростанций перед ТЭСПоэтому основной вопрос, который встаёт в связи с использованием термальной энергией, какие экологические преимущества имеет геотермальная электростанция? Используя воду и пар, нагретые самой природой, такие электростанции не производят выбросов. Минимизирует вред, наносимый окружающей среде и небольшие габариты подобных станций. Так что, преимущества геотермальных электростанций перед ТЭС не подлежат сомнению.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА | sibac.info

Скотарев  Иван  Николаевич

студент  2  курса,  кафедра  физики  СтГАУ,  г.  Ставрополь

E-mail: 

Хащенко  Андрей  Александрович

научный  руководитель,  кан.  физ.-мат.  наук,  доцент  СтГАУ,  г.  Ставрополь

 

Сейчас  человечество  не  сильно  задумывается,  что  оно  оставит  будущим  поколениям.  Люди  бездумно  выкачивают  и  выкапывают  полезные  ископаемые.  С  каждым  годом  растёт  население  планеты,  а  следовательно  увеличивается  и  потребность  в  ещё  в  большем  количестве  энергоносителей  таких  как  газ,  нефть  и  уголь.  Продолжаться  это  долго  не  может.  Поэтому  сейчас  помимо  развития  атомной  промышленности  становится  актуальным  использование  альтернативных  источников  энергии.  Одним  из  перспективных  направлений  в  этой  области  является  геотермальная  энергетика.

Большая  часть  поверхности  нашей  планеты  обладает  значительными  запасами  геотермальной  энергии  вследствие  значительной  геологической  деятельности:  активной  вулканической  деятельности  в  начальные  периоды  развития  нашей  планеты  а  также  и  по  сей  день,  радиоактивного  распада,  тектонических  сдвигов  и  наличия  участков  магмы  в  земной  коре.  В  некоторых  местах  нашей  планеты  скапливается  особенно  много  геотермальной  энергии.  Это,  например,  различные  долины  гейзеров,  вулканы,  подземные  скопления  магмы,  которые  в  свою  очередь  нагревают  верхние  породы. 

Говоря  простым  языком  геотермальная  энергия  —  это  энергия  внутренних  областей  Земли.  Например  извержение  вулканов  наглядно  свидетельствует  об  огромной  температуре  внутри  планеты.  Эта  температура  постепенно  снижается  от  горячего  внутреннего  ядра  до  поверхности  Земли  (рисунок  1). 

 

Рисунок  1.  Температура  в  различных  слоях  земли

 

Геотермальная  энергия  всегда  привлекала  людей  возможностями  своего  полезного  применения.  Ведь  человек  в  процессе  своего  развития  придумывал  множество  полезных  технологий  и  во  всём  искал  выгоду  и  прибыль.  Так  и  произошло  с  углём,  нефтью,  газом,  торфом  и  т.  д.

Например,  в  некоторых  географических  районах  использование  геотермальных  источников  может  существенно  увеличить  выработку  энергии,  так  как  геотермальные  электростанции  (ГеоТЭС)  являются  одним  из  наиболее  дешевых  альтернативных  источников  энергии,  потому  что  в  верхнем  трехкилометровом  слое  Земли  содержится  свыше  1020  Дж  теплоты,  пригодной  для  выработки  электроэнергии  [5].  Сама  природа  дает  человеку  в  руки  уникальный  источник  энергетики,  необходимо  только  его  использовать.

Всего  сейчас  насчитывается  5  типов  источников  геотермальной  энергии:

1.  Месторождения  геотермального  сухого  пара. 

2.  Источники  влажного  пара.  (смеси  горячей  воды  и  пара). 

3.  Месторождения  геотермальной  воды  (содержат  горячую  воду  или  пар  и  воду). 

4.  Сухие  горячие  скальные  породы,  разогретые  магмой. 

5.  Магма  (расплавленные  горные  породы  нагретые  до  1300  °С).

Магма  передает  свое  тепло  горным  породам,  причем  с  ростом  глубины  их  температура  повышается.  По  имеющимся  данным,  температура  горных  пород  повышается  в  среднем  на  1  °С  на  каждые  33  м  глубины  (геотермическая  ступень).  В  мире  имеется  большое  разнообразие  температурных  условий  геотермальных  источников  энергии,  которые  будут  определять  технические  средства  для  ее  использования  [5].

Геотермальная  энергия  может  быть  использована  двумя  основными  способами  -  для  выработки  электроэнергии  и  для  обогрева  различных  объектов.  Геотермальное  тепло  можно  преобразовывать  в  электричество,  если  температура  теплоносителя  достигает  более  150  °С.  Как  раз  использование  внутренних  областей  Земли  для  отопления  является  наиболее  выгодным  и  эффективным  а  так  же  очень  доступным.  Прямое  геотермальное  тепло  в  зависимости  от  температуры  может  использоваться  для  отопления  зданий,  теплиц,  бассейнов,  сушки  сельскохозяйственных  и  рыбопродуктов,  выпаривания  растворов,  выращивания  рыбы,  грибов  и  т.  д.  [1]. 

Все  существующие  на  сегодняшний  день  геотермальные  установки  делятся  на  три  типа: 

1.  станции,  основой  для  работы  которых  являются  месторождения  сухого  пара  —  это  прямая  схема.

Электростанции  на  сухом  пару  появились  раньше  всех.  Для  того  чтобы  получить  требующуюся  энергию  пар  пропускается  через  турбину  или  генератор  (рисунок  2). 

 

Рисунок  2.  Геотермальная  электростанция  прямой  схемы

 

2.  станции  с  сепаратором,  использующие  месторождения  горячей  воды  под  давлением.  Иногда  для  этого  используется  насос,  который  обеспечивает  нужный  объём  поступающего  энергоносителя  —  непрямая  схема.

Это  наиболее  распространенный  тип  геотермальных  станций  в  мире.  Здесь  воды  закачиваются  под  высоким  давлением  в  генераторные  установки.  Происходит  накачивание  гидротермального  раствора  в  испаритель  для  снижения  давления,  в  результате  идёт  испарение  части  раствора.  Далее  образовывается  пар,  который  и  заставляет  работать  турбину.  Оставшаяся  жидкость  также  может  приносить  пользу.  Обычно  её  пропускают  ещё  через  один  испаритель  и  получить  дополнительную  мощность  (рисунок  3). 

 

Рисунок  3.  Геотермальная  электростанция  непрямой  схемы

 

Они  характеризуются  отсутствием  взаимодействия  генератора  или  турбины  с  паром  или  водой.  Принцип  их  действия  основан  на  разумном  применении  подземной  воды  умеренной  температуры.

Обычно  температура  должна  быть  ниже  двухсот  градусов.  Сам  бинарный  цикл  заключается  в  использовании  двух  типов  вод  —  горячей  и  умеренной.  Оба  потока  пропускаются  через  теплообменник.  Более  горячая  жидкость  выпаривает  более  холодную,  и  образуемые  вследствие  этого  процесса  пары  приводят  в  действие  турбины  [2],  [3],  [6]. 

 

Рисунок  4.  Схема  геотермальной  электростанци  с  бинарным  циклом

 

Что  касается  нашей  страны  геотермальная  энергия  занимает  первое  место  по  потенциальным  возможностям  ее  использования  из-за  уникального  ландшафта  и  природных  условий.  Найденные  запасы  геотермальных  вод  с  температурой  от  40  до  200  °С  и  глубиной  залегания  до  3500  м  на  её  территории  могут  обеспечить  получение  примерно  14  млн.  м3  горячей  воды  в  сутки.  Большие  запасы  подземных  термальных  вод  находятся  в  Дагестане,  Северной  Осетии,  Чечено-Ингушетии,  Кабардино-Балкарии,  Закавказье,  Ставропольском  и  Краснодарском  краях,  Казахстане,  на  Камчатке  и  в  ряде  других  районов  России.  Например,  в  Дагестане  уже  длительное  время  термальные  воды  используются  для  теплоснабжения. 

Первая  геотермальная  электростанция  была  построена  в  1966  году  на  Паужетском  месторождении  на  полуострове  Камчатка  с  целью  электроснабжения  окрестных  поселков  и  рыбоперерабатывающих  предприятий,  что  способствовало  местному  развитию.  Местная  геотермальная  система  может  обеспечить  энергией  электростанции  мощностью  до  250—350  МВт.  Но  данный  потенциал  используется  только  на  четверть  [4]. 

Территория  Курильских  островов  обладает  уникальными  и  одновременно  сложным  ландшафтом.  Электроснабжение  находящихся  там  городов  обходится  большими  сложностями:  необходимость  доставки  на  острова  средств  существования  морским  или  воздушным  путём,  что  достаточно  затратно  и  занимает  много  времени.  Геотермальные  ресурсы  островов  на  данный  момент  позволяют  получать  230  МВт  электроэнергии,  что  может  обеспечить  все  потребности  региона  в  энергетике,  тепле,  горячем  водоснабжении. 

На  острове  Итуруп  найдены  ресурсы  двухфазного  геотермального  теплоносителя,  мощности  которого  достаточно  для  удовлетворения  энергопотребностей  всего  острова.  На  южном  острове  Кунашире  действует  ГеоЭс  2,6  МВт,  которая  используются  для  получения  электроэнергии  и  теплоснабжения  г.  Южно-Курильска.  Планируются  строительство  еще  нескольких  ГеоЭс  суммарной  мощностью  12—17  МВт  [4]. 

Наиболее  перспективными  регионами  для  применения  геотермальных  источников  в  России  являются  юг  России  и  Дальний  Восток.  Огромный  потенциал  геотермальной  энергетики  имеют  Кавказ,  Ставрополье,  Краснодарский  край. 

Использование  геотермальных  вод  в  Центральной  части  России  требует  больших  затрат  из-за  глубокого  залегания  термальных  вод. 

В  Калининградской  области  в  планах  осуществление  опытного  проекта  геотермального  тепло-  и  электроснабжения  города  Светлый  на  базе  бинарной  ГеоЭс  мощностью  4  МВт.

Геотермальная  энергетика  России  ориентирована  как  на  строительство  крупных  объектов,  так  и  на  использование  геотермальной  энергии  для  отдельных  домов,  школ,  больниц,  частных  магазинов  и  других  объектов  с  использованием  геотермальных  циркуляционных  систем.

В  Ставропольском  крае  на  Каясулинском  месторождении  начато  и  приостановлено  строительство  дорогостоящей  опытной  Ставропольской  ГеоТЭС  мощностью  3  МВт.

 

В  1999  г.  была  пущена  в  эксплуатацию  Верхне-Мутновская  ГеоЭС  (рисунок  5). 

 

Рисунок  5.  Верхне-Мутновская  ГеоЭС

 

Она  обладает  мощностью  12  МВт  (3х4  МВт)  и  является  опытно-промышленной  очередью  Мутновской  ГеоЭС  проектной  мощностью  200  МВт,  создаваемой  для  электроснабжения  промышленного  района  Петропавловск-Камчатска. 

Но  несмотря  на  большие  плюсы  в  этом  направлении  присутствует  и  недостатки: 

1.  Главный  из  них  заключается  в  необходимости  закачки  отработанной  воды  обратно  в  подземный  водоносный  горизонт.  В  термальных  водах  содержится  большое  количество  солей  различных  токсичных  металлов  (бора,  свинца,  цинка,  кадмия,  мышьяка)  и  химических  соединений  (аммиака,  фенолов),  что  делает  невозможным  сброс  этих  вод  в  природные  водные  системы,  расположенные  на  поверхности. 

2.  Иногда  действующая  геотермальная  электростанция  может  приостановиться  в  результате  естественных  изменений  в  земной  коре.

3.  Найти  подходящее  место  для  строительства  геотермальной  электростанции  и  получить  разрешение  местных  властей  и  согласие  жителей  на  ее  возведение  может  быть  проблематичным.

4.  Строительство  ГеоЭС  может  отрицательно  повлиять  на  землю  стабильности  в  окружающем  регионе.

Большинство  этих  недостатков  незначительны  и  в  полнее  решаемы  [1].

Сегодня  в  мире  люди  не  задумываются  об  последствиях  своих  решений.  Ведь  что  они  будут  делать  если  закончатся  нефть,  газ  и  угол?  Люди  ведь  привыкли  жить  в  комфорте.  Топить  дома  дровами  они  долго  не  смогут,  потому  что  большому  населению  потребуется  огромнейшее  количество  древесины,  что  само  собой  приведёт  масштабной  вырубке  лесов  и  оставит  мир  без  кислорода.  Поэтому  для  того  чтобы  этого  не  произошло  необходимо  использовать  доступные  нам  ресурсы  экономно,  но  с  максимальной  эффективностью.  Как  раз  одним  из  способов  решения  этой  проблемы  является  развитие  геотермальной  энергетики.  Конечно  она  имеет  свои  плюсы  и  минусы,  но  её  развитие  очень  облегчит  дальнейшее  существование  человечества  и  сыграет  большую  роль  в  дальнейшем  его  развитии. 

Сейчас  это  направление  не  сильно  популярно,  потому  что  в  мире  господствует  нефтяная  и  газовая  промышленность  и  крупные  компании  не  спешат  вкладывать  средства  в  развитие  столь  необходимой  отрасли  промышленности.  Поэтому  для  дальнейшего  прогрессирования  геотермальной  энергетики  необходимы  инвестиции  и  поддержка  государства,  без  которой  осуществить  что  либо  в  масштаб  всей  страны  просто  невозможно.  Введение  геотермальной  энергетики  в  энергобаланс  страны  позволит: 

1.  повысить  энергетическую  безопасность,  с  другой  —  снизить  вредное  воздействие  на  экологическую  обстановку  по  сравнению  с  традиционными  источниками. 

2.  развить  экономику,  потому  что  высвободившиеся  денежные  средства  можно  будет  вкладывать  в  другие  отрасли  промышленности,  социальное  развитие  государства  и  т.  д.

В  последнее  десятилетие  использование  нетрадиционных  возобновляемых  источников  энергии  переживает  в  мире  настоящий  бум.  Масштаб  применения  этих  источников  возрос  в  несколько  раз.  Она  способна  радикально  и  на  наиболее  экономической  основе  решить  проблему  энергоснабжения  указанных  районов,  которые  пользуются  дорогим  привозным  топливом  и  находятся  на  грани  энергетического  кризиса,  улучшить  социальное  положение  населения  этих  районов  и  т.  д.  Как  раз  это  мы  и  наблюдаем  в  странах  Западной  Европы  (Германия,  Франция,  Великобритания),  Северной  Европы  (Норвегия,  Швеция,  Финляндия,  Исландия,  Дания).  Это  объясняется  тем  что  они  обладают  высоким  экономическим  развитием  и  очень  сильно  зависят  от  ископаемых  ресурсов  и  поэтому  главы  этих  государств  вместе  с  бизнесом  стараются  минимизировать  эту  зависимость.  В  частности,  странам  Северной  Европы  развитию  геотермальной  энергетики  благоприятствует  наличие  большого  количества  гейзеров  и  вулканов.  Ведь  не  зря  Исландию  называют  страной  вулканов  и  гейзеров. 

Сейчас  человечество  начинает  понимать  всю  важность  это  отрасли  и  старается  по  мере  возможностей  её  развивать.  Применение  большого  ряда  самых  разнообразных  технологий  даёт  возможность  снизить  потребление  энергии  на  40—60  %  и  одновременно  обеспечить  реальное  экономическое  развитие.  А  оставшиеся  потребности  в  электроэнергии  и  тепле  можно  закрыть  за  счёт  более  эффективного  её  производства,  за  счёт  восстановления,  за  счёт  объединения  выработки  тепловой  и  электрической  энергий,  а  так  же  за  счёт  использования  возобновляемых  ресурсов,  что  даёт  возможность  отказаться  от  некоторых  видов  электростанций  и  снижает  эмиссию  углекислого  газа  на  примерно  на  80  %. 

 

Список  литературы:

1.Баева  А.Г.,  Москвичёва    В.Н.  Геотермальная  энергия:  проблемы,  ресурсы,  использование:  изд.  М.:  СО  АН  СССР,  Институт  теплофизики,  1979.  —  350  с.

2.Берман  Э.,  Маврицкий  Б.Ф.  Геотермальная  энергия:  изд.  М.:  Мир,  1978  —  416  стр.

3.Геотермальная  энергия.  [Электронный  ресурс]  —  Режим  доступа  —  URL:  http://ustoj.com/Energy_5.htm  (дата  обращения  29.08.2013).

4.Геотермальная  энергетика  России.  [Электронный  ресурс]  —  Режим  доступа  —  URL:  http://www.gisee.ru/articles/geothermic-energy/24511/  (дата  обращения  07.09.2013).

5.Дворов  И.М.  Глубинное  тепло  Земли:  изд.  М.:  Наука,  1972.  —  208  с.

6.Энергетика.  Материал  из  Википедии  —  свободной  энциклопедии.  [Электронный  ресурс]  —  Режим  доступа  —  URL:  http://ru.wikipedia.org/wiki/Геотермальная_энергетика  (дата  обращения  07.09.2013).

sibac.info

Геотермальная энергия Земли и перспективы ее использования

Последние десятилетия в истории человечества характеризуются настоящим бумом в использовании возобновляемых источников энергии. Масштабы их применения выросли в разы. Причин этому несколько. Во-первых, эпоха, в которой главенствующую роль играли дешевые традиционные энергоносители, закончилась. Единственная тенденция, развивающаяся сегодня в данной области – рост цен на все виды ископаемого топлива. Во-вторых, страны, которые являются энергетически зависимыми, всячески стараются использовать возможности альтернативных источников энергии. И, наконец, в-третьих, большая роль в этом вопросе отводится экологическим соображениям – выбросу вредных газов и парниковому эффекту.

Именно такие причины поставили развитие ВИЭ в число приоритетных задач в области энергетики во многих странах. Ряд государств реализуют ее через принятие соответствующей законодательной и нормативной базы, где устанавливается правовая, экономическая и организационная основа использования возобновляемых источников энергии.

В России, несмотря на то, что она является ведущей мировой державой по запасам ископаемых энергетических ресурсов, в последнее время тоже произошло принципиальное изменение отношения к вопросам использования ВИЭ. Толчком к этому послужил рост стоимости органического топлива, которое вдобавок еще и дорого обходится в транспортировке в отдаленные районы страны, и, как следствие этого, – рост цен на тепло- и электроэнергию. В вопросах совершенствования и развития систем теплоснабжения на первое место вышли аспекты по расширению использования местных нетрадиционных источников энергии, в том числе и геотермальной энергетики.

Геотермальная энергия – это физическое тепло глубинных слоев земли, которые характеризуются гораздо большей температурой, чем температура воздуха на поверхности. Носителями подобной энергии могут быть жидкие флюиды в виде воды или пароводяной смеси, а также сухая горная порода, расположенная в соответствующих глубинах. Горячие недра Земли постоянно выпускают на поверхность тепловой поток, и под его воздействием образуется градиент температуры – геотермальная ступень. Сегодня целесообразно и экономически выгодно в получении энергии использование только тепло термальных вод и парогидротермов. При производстве электроэнергии с учетом адекватных технико-экономических затрат  температура должна составлять не меньше 100 градусов по цельсию. Мест на Земле с подобными температурами относительно немного.

Идеальных источников энергии человечество пока еще не выявило, поэтому, как и любые другие, геотермальная энергетика имеет ряд своих плюсов и минусов.

Наиболее явное ее преимущество в фактической неисчерпаемости и стабильности действия. Можно предположить, что влияние человека может снизить температуру верхних слоев планеты, но представить подобную интенсивную деятельность на практике совершенно невозможно. В отличие от солнечной или ветряной энергии, которые создают перебои в выработке во время безветренной или пасмурной погоды, тепло Земли можно использовать постоянно.

Но недостатки в данной области тоже имеются. Получение больших объемов геотермальной энергии доступно далеко не всем странам мира. Эту возможность имеют только те, которые располагаются в вулканических районах планеты. Помимо этого есть определенные риски для окружающей среды, связанные с выбросами отработанной воды. Подземные воды представляют опасность для здоровья человека в связи с возможным содержанием в них токсичных соединений.

Сравнительно невысокий уровень эксплуатации данного вида энергии обусловлен и другими не менее значительными причинами, к которым можно отнести высокую стоимость скважин; сложные транспортабельные характеристики термальной воды; необходимая обратная закачка отработанной воды; агрессивные коррозийные свойства; одноразовость в использовании системами теплоснабжения.

Область применения и процент эффективности использования геотермальных вод зависят от  многих факторов, таких как энергетический потенциал, общий дебит, запас скважин, химический состав, минерализация, наличие потребителей и т.д.

Наиболее распространенными и эффективными сферами применения геотермальной энергии являются отопление, горячее и техническое водоснабжение объектов в различных отраслях деятельности: электроэнергетике, промышленности, сельском хозяйстве. А оптимальный энергетический эффект может быть достигнут за счет создания определенных систем отопления и повышения перепада температур.

Несьявеллир ГеоТЭС, Исландия

Несьявеллир ГеоТЭС, Исландия

Сегодня человечество использует более 4% потенциала геотермальных источников для получения электроэнергии, и только мене 1% приходится на получение тепла. Коэффициент мощности современных ГеоЭС составляет около 90%, что в разы превышает показатель  технологий, использующих другие возобновляемые источники энергии, такие как солнце, ветер или приливы.

Гео- электростанции работают почти в 30 странах мира, а их суммарная мощность — более 10 тысяч МВт. Лидерами в этой сфере являются США, Филиппины, Мексика, Индонезия, Италия, Япония, Новая Зеландия, Исландия. Что касается Исландии, то статус развитой страны с высокими показателями жизни она получила именно по причине перевода своей экономики на геотермальный ресурс. Более 90% теплоснабжения здесь основано на геотермальном тепле. Показательным в развитии области является созданный исландцами проект системы геотермального теплообеспечения Рейкьявика, который покрывает 99% потребностей города в тепле.

Большой популярностью в последнее время пользуются геотермальные системы теплоснабжения, в основе которых лежит работа тепловых насосов. Почти 58% общих мощностей геотермальных тепловых установок составляют теплонасосные агрегаты. Данная технология успешно развивается в Германии, США и Канаде.

Верхне-Мутновская ГеоЭС

Верхне-Мутновская ГеоЭС

Наряду с большим потенциалом органических видов топлива, Россия располагает и немалыми геотермальными ресурсами. Свое развитие геотермальная энергетика здесь начинает с середины 60-х годов. В это время в СССР была образована Северокавказская разведочная экспедиция для бурения и реконструкции нефтегазовых скважин на термальные воды. А первая ГеоТЭС на нашей территории построена в 1967 году на Камчатке. Ее первоначальная мощность — 5 мВт, а после —  возросла до 11  мВт. В 1983 году эксперты составили атлас термальных вод СССР. Плодотворным в становлении отрасли стал период с 1970 по 1990 гг. —  добыча данного ресурса за это время в стране увеличилась в 9 раз.

Новым толчком в развитии геотермальной энергетики на Камчатке в 90-е годы стало появление фирм, которые совместно с промышленными организациями разработали прогрессивные схемы, технологии и виды оборудования в сфере преобразования геотермальной энергии в электрическую. Итогом этой деятельности стало введение в работу Верхне-Мутновской ГеоЭС.

Сегодня в России разведано более 70 термальных месторождении, а количество пробуренных скважин превышает 4000. Самыми перспективными в развитии отрасли являются части Курильского, Западно-Сибирского и Северо-Кавказского регионов.

Ресурсы, которые обнаружены на Камчатке, дают возможность обеспечить ее население теплом и электричеством на 100 последующих лет. Здесь наряду с Мутоновским месторождением большими запасами располагают Кошелевское, Большое Банное и Киреунское. Весь объем тепла камчатских геотермальных вод составляет 5000МВт.

Менделеевская ГеоЭС, Кунашир, Курилы (Фото sdelano-u-nas.livejournal.com)

Менделеевская ГеоЭС, Кунашир, Курилы (Фото sdelano-u-nas.livejournal.com)

Количество ресурса тепла земли Курильских островов тоже немалое. На острове Итуруп сосредоточено столько двухфазного геотермального теплоносителя, мощности которого могут удовлетворить энергопотребности региона на ближайшие несколько сотен лет. Город Южно-Курильск на острове Кунашир уже частично обеспечивает население тепло- и электроэнергией  с помощью геотермального тепла. Остров Парамушир менее изучен в этой области, но определено, что он располагает немалыми запасами геотермальной воды температурой  от 70 до 95 градусов. Здесь уже идет постройка ГеоТС.

Самое большое распространение в нашей стране имеют геотермальные месторождения, температура воды которых от 100 до 200 градусов. Тут наиболее целесообразным становится использование низкокипящих рабочих тел в паротурбинном цикле. Двухконтурные ГеоТЭС у нас работают во многих регионах, но наиболее подходящие условия для их реализации на Северном Кавказе. Тут длительному и детальному изучению подверглись месторождения с температурой от 70 до 180 градусов с глубиной от 300 до 5000 метров. В данных регионах за счет геотермальной воды работает большой процент теплоснабжения и систем горячего водоснабжения. На территории Дагестана добыча геотермальной воды превысила 6 млн.м.

Районами, располагающими определенными геотермальными запасами, которые пригодны в широкомасштабном применении в отраслях промышленности и сельского хозяйства являются Приморье, Прибайкалье и Западная Сибирь.

Наряду с существующими источниками энергии геотермальная энергетика в России на сегодняшний день проигрывает по многим параметрам. Но ситуация в нашей стране складывается таким образом, что развитие данной отрасли является наиболее целесообразным и экономически выгодным в вышеуказанных регионах, где этот источник способен радикально решить проблему энергоснабжения в условиях использования дорогих привозных видов топлива.

Еще по этой теме

Метки: Верхне-Мутновская ГеоЭС, возобновляемые источники энергии, геотермальная ступень, геотермальная энергетика, геотермальные месторождения, ГеоЭС, Исландия, Камчатка, коррозийные свойства, Кунашир, Курильские острова, Парамушир, паротурбинный цикл, Рейкьявик, термальная вода

Интересная статья? Поделитесь ей с друзьями:

novostienergetiki.ru

Геотермальная электрическая станция - принцип работы, виды и распространение в Мире

Геотермальная электрическая станция – это комплекс инженерных устройств, преобразующих тепловую энергию планеты в электрическую энергию.

Геотермальная энергетика Геостанция6

Содержание статьи

Геотермальная энергетика относится к «зеленым» видам энергии. Данный способ энергообеспечения потребителей получил широкое распространение в регионах с термической активностью планеты для различных видов использования.

Геотермальная энергия бывает:

  • Петротермальная, когда источник энергии — слои земли обладающие высокой температурой;
  • Гидротермальная, когда источник энергии — подземные воды.

Геотермальные установки используются для энергоснабжения предприятий сельского хозяйства, промышленности и в жилищно-коммунальной сфере.

Принцип работы геотермальной электростанции Геостанция

В современных геотермальных установках преобразование тепловой энергии земли в электрическую осуществляют нескольким способами, это:

Прямой метод

В установках такого вида, пар, поступающий из недр земли, работает в непосредственном контакте с паровой турбиной. Пар подается на лопасти турбины, которая свое вращательное движение передает генератору, вырабатывающему электрический ток.

Не прямой метод

В этом случае из земли закачивается раствор, который поступает на испаритель, и уже после испарения, полученный пар поступает на лопасти турбины.

Смешанный (бинарный) метод Геостанция3

В устройствах, работающих по этому методу, вода из скважины поступает на теплообменник, в котором, передает свою энергию теплоносителю, который, в свою очередь, под воздействием полученной энергии испаряется, а образовавшийся пар поступает на лопасти турбины.В геотермальных установках, работающих по прямому методу (способу) воздействия на турбину, источником энергии служит геотермальный пар.

Во втором методе — используются перегретые гидротехнические растворы (гидротермы), которые обладают температурой выше 180 *С.

При бинарном методе – используются горячая вода, забираемая из слоев земли, а в качестве парообразующей используется жидкости с меньшей температурой кипения (фреон и подобные).

Плюсы и минусы

К достоинствам использования электростанций данного вида можно отнести: Геостанция13

  • Это возобновляемый источник энергии;
  • Огромные запасы в дальней перспективе развития;
  • Способность работать в автономном режиме;
  • Не подверженность сезонным и погодным факторам влияния;
  • Универсальность – производство электрической и тепловой энергии;
  • При строительстве станции не требуется устройство защитных (санитарных) зон.

Недостатками станций являются:

  • Высокая стоимость строительства и оборудования;
  • В процессе работы вероятны выбросы пара с содержанием вредных примесей;
  • При использовании гидротермов из глубинных слоев земли, необходима их утилизация.

Геотермальные станции в России Геостанция2

Геотермальная энергетика, наряду с прочими видами «зеленой» энергетики, неукоснительно развивается на территории нашего государства. По расчетам ученых, внутренняя энергия планеты, в тысячи раз превышает количество энергии содержащейся в природных запасах традиционных видах топлива (нефть, газ). Геостанция10

В России успешно работают геотермальные станции, это:

Паужетская ГеоЭC

Расположена около поселка Паужетка на полуострове Камчатка. Ведена в эксплуатацию в 1966 году.Технические характеристики:

  1. Электрическая мощность – 12,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 124,0 млн.кВт.часов;
  3. Количество энергоблоков – 2.

Ведутся работы по реконструкции, в результате которой электрическая мощность увеличится до 17,0 МВт.

Верхне-Мутновская опытно-промышленная ГеоЭС

Расположена в Камчатском крае. Введена в эксплуатацию в 1999 году.Технические характеристики:

  1. Электрическая мощность – 12,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 63,0 млн.кВт.часов;
  3. Количество энергоблоков – 3.

Мутновская ГеоЭС Геостанция11

Наиболее крупная электрическая станция подобного типа. Расположена в Камчатском крае. Введена в эксплуатацию в 2003 году.Технические характеристики:

  1. Электрическая мощность – 50,0 МВт;
  2. Годовой объем вырабатываемой электрической энергии – 350,0 млн кВт.часов;
  3. Количество энергоблоков – 2.

Океанская ГеоЭС

Расположена в Сахалинской области. Введена в эксплуатацию в 2007 году.Технические характеристики:

  1. Электрическая мощность – 2,5 МВт;
  2. Количество энергомодулей – 2.

Менделеевская ГеоТЭС Геостанция9

Расположена на острове Кунашир. Введена в эксплуатацию в 2000 году.

Технические характеристики:

  1. Электрическая мощность – 3,6 МВт;
  2. Тепловая мощность – 17 Гкал/час;
  3. Количество энергомодулей – 2.

В настоящее время ведется модернизация станции, после которой мощность составит 7,4 МВт.

Геотермальные станции в мире

Во всех технически развитых странах, где есть сейсмически активные территории, где внутренняя энергия земли выходит наружу, строятся и эксплуатируются геотермальные электрические станции. Опытом строительства подобных инженерных объектов обладают:

США

Страна с наибольшим количеством потребления электрической энергии, вырабатываемой гелиотермическим станциями.

Установленная мощность энергоблоков составляет более 3000 МВт- это 0,3% от всей вырабатываемой электрической энергии в США.

Наиболее крупные это: Геостанция8

  1. Группа станций «The Geysers». Расположена в Калифорнии, в состав группы входит 22 станции, установленной мощностью 1517,0 МВт.
  2. В штате Калифорния, станция «Imperial Valley Geothermal Area» установленной мощностью 570,0 МВт.
  3. В штате Невада станция «Navy 1 Geothermal Area» установленной мощностью 235,0 МВт.

Филиппины

Установленная мощность энергоблоков составляет более 1900 МВт, что составляет 27 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Макилинг-Банахау» установленной мощностью 458,0 МВт.
  2. «Тиви», установленная мощность 330,0 МВт.

Индонезия Геостанция7

Установленная мощность энергоблоков составляет более 1200 МВт, что составляет 3,7 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции:

  1. «Sarulla Unit I», установленная мощность – 220,0 МВт.
  2. «Sarulla Unit II», установленная мощность — 110,0 МВт.
  3. «Sorik Marapi Modular», установленная мощность — 110,0 МВт.
  4. «Karaha Bodas», установленная мощность – 30,0 МВт.
  5. «Ulubelu Unit» — находится в стадии строительства на Суматре.

Мексика

Установленная мощность энергоблоков составляет 1000 МВт, что составляет 3,0 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупная:

  1. «Cerro Prieto Geothermal Power Station», установленной мощностью 720,0 МВт.

Новая Зеландия Геостанция4

Установленная мощность энергоблоков составляет более 600 МВт, что составляет 10,0 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупная:

  1. «Ngatamariki», установленной мощностью 100,0 МВт.

Исландия

Установленная мощность энергоблоков составляет 600 МВт, что составляет 30,0 % от всей вырабатываемой электрической энергии в стране.

Наиболее крупные станции: Геостанция5

  1. «Hellisheiði Power Station», установленной мощностью 300,0 МВт.
  2. «Nesjavellir», установленной мощностью 120,0 МВт.
  3. «Reykjanes», установленной мощностью 100,0 МВт.
  4. «Svartsengi Geo», установленной мощностью 80,0 МВт.

Кроме выше перечисленных, геотермальные электростанции работают в Австралии, Японии, странах Евросоюза, Африки и Океании.

Понравилась статья? Поделись с друзьями!

alter220.ru

Источники геотермальной энергии: ресурсы земли и воды

уже прочитали: 129

Геотермальная энергетика — откуда берется энергия?

Основные источники энергии, используемые сегодня, полностью обеспечивают все текущие потребности населения. Однако, согласно расчетам ученых, уже через 20 лет человечество начнет ощущать нехватку энергии. Это произойдет из-за постоянно возрастающих потребностей населения и, в особенности, промышленных предприятий. К тому времени заметно истощатся такие источники, как угольные нефтяные и газовые месторождения, а гидроэнергетические сооружения уже сегодня значительно изношены и нуждаются в поддержке со стороны.

Ученые видят выход в использовании альтернативных (солнечная и ветровая энергетика) или возобновляемых видов энергии (ВИЭ), одной из разновидностей которых является геотермальная энергетика.

Согласно результатов исследований, температура земного ядра составляет около 6000°С. По мере приближения к земной коре она понемногу снижается. Скорость охлаждения земного ядра составляет около 400°С за миллиард лет, что позволяет не беспокоиться о том, что источник иссякнет. Причиной такого нагрева считается постоянная реакция радиоактивного распада элементов, составляющих значительную часть земного ядра урана, тория, радиоактивного калия.

Использование этого тепла человеком пока значительно ограничено, поскольку технологические возможности низки и не позволяют получать энергию в любой географической точке. На сегодня используются только термоаномальные зоны, где имеются точки выхода на поверхность горячих пород или водных источников.

Различают следующие типы источников тепловой энергии:

  • поверхностные, находящиеся на глубинах нескольких десятков метров

  • подземные гидротермальные резервуары

  • парогидротермальные участки

  • петротермальные системы, обладающие «сухим» теплом горных пород

  • магматические участки, где к поверхности подходят расплавленные горные массивы

Основными типами геотермальных источников являются участки с теплоносителями (вода или пар) и с сухими нагретыми горными породами. Рассмотрим их внимательнее.

Петротермальная энергетика

Петротермальная энергетика основана на получении энергии с помощью подземного тепла, полученного от горячих горных пород. Технологически это направление еще не отработано, поскольку для получения энергии требуется иметь доступ к нагретым горным породам, а они даже в регионах с повышенным температурным градиентом залегают на глубине около 2 км от поверхности. Поэтому на сегодня используются только близкие к поверхности, по сути — аномальные участки земной коры с выходом на поверхность горячих массивов.

При появлении технологической возможности бурить на глубины 8-10 км, сооружать геотермальные электростанции (ГеоТЭС) будет можно в любой точке, где это необходимо.

Получение электроэнергии планируется путем закачки в подземные полости воды, превращающейся в перегретый пар. Он выводится под давлением на поверхность, где подключается к турбинным установкам, производящим электроэнергию. Сложность заключается в необходимости большой площади контакта, чтобы получать достаточные мощности. Предполагается использование подземных разломов, систем трещин и прочих полостей с высокими температурами.

Гидротермальная энергетика

Это направление активно используется уже сегодня. Страны, имеющие на своей территории участки с богатыми горячими источниками, используют их для обогрева жилья и получения электроэнергии.

Наиболее заметными пользователями в этом направлении являются:

В зависимости от характера источников, температуры и мощности подземных процессов, устанавливаются электростанции, производится подключение городских отопительных сетей к подземным резервуарам с горячей водой, находящейся под давлением. Температура пара, пригодного для выработки электроэнергии в промышленных масштабах, должна составлять как минимум 200°С, что возможно не везде. Практически, все существующие ныне электростанции, использующие геотермальную энергию, являются особенными, работающими в отдельных уникальных условиях.

Принципы работы геотермальных электростанций

Геотермальные электростанции используют либо горячие горные породы для нагрева закачиваемой в подземные полости воды, либо естественные горячие источники, уже существующие в толще земли. Перегретый пар, образующийся в результате геотермальных процессов, выводится на поверхность земли и задействует лопатки турбин паровых электрогенераторов.

Изложенный принцип верно отражает схему, но на практике все обстоит намного сложнее. Во-первых, состав пара, выводимого из подземных емкостей, сложен и насыщен агрессивными и ядовитыми газами и соединениями. Во-вторых, количество выводимого носителя должно пополняться закачкой свежих объемов, иначе будет нарушен гидродинамический баланс, отчего функционирование источника может быть нарушено или вовсе прекратится.

В зависимости от типа источника существуют следующие типы ГеоТЭС:

  • сооружения, установленные на природных источниках горячего пара или воды (парогидротермах)

  • двухконтурные ГеоТЭС, использующие горячий водяной пар из источника и вторичный пар, полученный от подведенной и нагретой воды

  • двухконтурные ГеоТЭС, использующие перегретую воду естественного происхождения

Конструкция каждой конкретной установки специализирована под местные условия, температуры и состав воды или пара. В большинстве случаев используются теплообменники, забирающие тепло у выведенного из подземных полостей носителя, который после этого закачивается обратно. Используются различные циклы очистки пара от ядовитых или агрессивных примесей, сернистых соединений, сероводорода и других веществ.

Достоинства ГеоТЭС

К достоинствам гидротермальных электростанций можно отнести:

  • источник энергии практически неисчерпаем

  • не используются углеводородные источники энергии

  • сооружение ГеоТЭС не меняет природный ландшафт, не требует использования больших площадей поверхности земли

  • необходимость во внешнем источнике энергии присутствует только на момент запуска оборудования. Как только станция дает первый ток, она обеспечивает свою работу самостоятельноникаких вложений, кроме первоначальных расходов на строительство, не имеется. Требуются лишь обслуживание и ремонт оборудования по необходимости

  • существуют возможности дополнительного использования оборудования станции (например, в качестве опреснителей воды)

  • экологическая чистота, отсутствие опасности заражения или загрязнения местности (этот пункт действует с определенными оговорками)

Недостатки

  • привязка станции к точке выхода на поверхность горячих источников, иногда находящихся в удаленных районах

  • эксплуатация ГеоТЭС способствует изменениям в ходе естественных природных процессов, в результате чего появляется опасность их прекращения

  • скважины или иные точки выхода могут стать источниками выбросов вредных или агрессивных летучих соединений

  • расходы на постройку станции достаточно велики, что способствует возрастанию стоимости энергии для конечного пользователя

Основная причина наличия указанных недостатков — неустойчивость естественных процессов для промышленного использования. Любое вмешательство способно нарушить хрупкое равновесие, а в гидродинамических системах опасность возрастает из-за появления возможности образования карстовых полостей. Эксплуатация ГеоТЭС требует аккуратного и бережного отношения к природным системам, возобновления объемов воды и прочих профилактических мероприятий.

Сферы применения

Геотермальная энергия на сегодняшний день не имеет преобладающего значения, но используется вполне активно. В регионах, где это возможно, создаются ГеоТЭС, станции обогрева жилья или производственных зданий и помещений. Рассмотрим наиболее популярные сферы использования геотермальной энергии:

Сельское хозяйство и садоводство

Доступ к нагретой воде или пару позволяет применять их в сельскохозяйственных или садоводческих комплексах и хозяйствах. Производится обогрев и полив растений, сельскохозяйственных культур в теплицах, оранжереях. Возможен обогрев сельскохозяйственных комплексов по содержанию и разведению животных, птицы. Возможности данного направления во многом зависят от характеристик источника, его специфических параметров и состава воды. Активное использование геотермальной энергии в сельском хозяйстве наблюдается в Израиле, Мексике, Кении, Греции Гватемале.

Промышленность и ЖКХ

Для использования геотермальной энергии промышленность и сфера ЖКХ являются наиболее удобными потребителями. Они нуждаются в стабильном и устойчивом источнике энергии, не зависящем от времени суток или других внешних проявлений. Добыча электроэнергии с помощью ГеоТЭС в промышленных масштабах производится в США, России, Новой Зеландии, Филиппинах, Исландии и других странах.

Постоянно происходит ввод в строй новых мощностей. Так, в 2014 году в Кении запущена самая мощная на тот момент ГеоТЭС. В Исландии находится вторая по величине станция — Хеллишейди. Кроме электроэнергии, используется обогрев жилья нагретыми подземными водами. В той же Исландии таким образом обогревается около 80% жилья и общественных зданий.

Геотермальные системы отопления для дома

Геотермальная энергия может быть использована как централизованным, так и частным порядком. Существуют геотермальные системы отопления для частных домов, действующие автономно и не использующие носители из централизованных сетей.

Используется принцип кондиционера, работающего в режиме обогрева. Отличие в том, что кондиционер прекращает нагрев при температуре наружного воздуха около -5°С, а для геотермальных установок такого ограничения не существует. Под землей устанавливаются коллекторы, в которых циркулирует антифриз. Он поглощает тепловую энергию и возвращается в жилое помещение нагретым, где через теплообменник греет теплоноситель системы отопления. Возможности этого способа обогрева велики, а расходы идут только на первичный монтаж установки и оплату электроэнергии для циркуляционного оборудования.

Крупнейшие производители геотермальной энергии

Самым крупным производителем геотермальной энергии в мире по праву считается Исландия. Ее доля в общем количестве составляет около 30%, что значительно превышает объемы выработки других государств.

На втором месте находятся Филиппины, где производят 27% от общего количества. Сальвадор и Коста-Рика вырабатывают по 14%, Кения дает 11,2%, а Никарагуа — 10% геотермальной энергии. Заметный вклад привносят Индонезия и Мексика — соответственно 3,7% и 3%.

Эти государства лидируют в производстве геотермальной энергии, что обусловлено наличием у них богатых и мощных источников, обилием вулканических проявлений или подземных гидротермальных источников. Примечательно, что существуют регионы, имеющие большой потенциал в отношении гидротермальных ресурсов, но практически не использующие их из-за достаточного количества других источников энергии.

Перспективы освоения геотермальных ресурсов в России

Энергоизбыточность России, основанная на обилии гидроэнергетических сооружений, понемногу снижается. Если не принимать серьезные меры уже сегодня, может наступить момент, когда объемы выработки энергии снизятся до критических величин. Возможности использования геотермальной энергии в России невелики, поскольку наличие горячих источников и их мощность не позволяют делать основную ставку на этот вид энергии. Тем не менее, в регионах, обладающих такими возможностями, использование геотермальной энергетики является одним из приоритетных направлений.

Ведутся серьезные исследования состояния источников, их объемы, рассматриваются перспективы и возможные последствия от работы геотермальных электростанций. На сегодня существующие геотермальные станции сосредоточены, в основном, на Камчатке и Сахалине, но, с развитием технологий, количество и мощность российских ГеоТЭС будут существенно увеличены.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

energo.house

Геотермальная энергия как возобновляемый источник энергетики

Термин “геотермальная энергия” происходит от греческого слова земля (гео) и тепловой (термальный). По сути, геотермальная энергия исходит из самой земли. Тепло от ядра земли, температура которого в среднем составляет 3600 градусов Цельсия, излучается  в сторону поверхности планеты. Обогрев источников и гейзеров под землей на глубине в  несколько километров может осуществляться с помощью специальных скважин, через которые поступает горячая вода (или пар от неё) до поверхности, где она может использоваться непосредственно как тепло или косвенно для выработки электроэнергии путем включения вращающихся турбин.

Так как вода под поверхностью земли постоянно пополняется, а ядро Земли будет продолжать вырабатывать тепло относительно человеческой жизни бесконечно, геотермальная энергия, в конечном счете, чистая и возобновляемая.

Методы сбора энергетических ресурсов Земли

Сегодня есть три основных метода сбора геотермальной энергии: сухой пар, горячая вода и бинарный цикл. Процесс с сухим паром прямо вращает привода турбин генераторов электроэнергии. Горячая вода поступает снизу вверх, затем распыляется в бак, чтобы создать пар для привода турбин. Эти два метода являются наиболее распространенными, генерируя сотни мегаватт электроэнергии в США, Исландии, Европе, России и других странах. Но расположение ограничено, так как эти заводы работают только в тектонических регионах, где легче получить доступ к подогретой воде.  При технологии бинарного цикла извлекается на поверхность теплая (не обязательно горячая) вода и объединяют её с бутаном или пентаном, который имеет низкую температуру кипения. Эта жидкость перекачивается через теплообменник, где  испаряется и направляется через турбину перед рециркуляцией обратно в систему. Технологии бинарного цикла дает  десятки мегаватт электроэнергии в США: Калифорнии, Неваде и на Гавайских островах.

геотермальная энергия

Принцип получения энергии

Недостатки получения геотермальной энергии

На уровне полезности, геотермальные электростанции являются дорогостоящими, чтобы построить и работать. Для поиска подходящего места требуется дорогостоящее обследование скважин без гарантии попадания в продуктивную подземную горячую точку. Тем не менее, аналитики ожидают увеличения этой мощности почти вдвое в течение следующих шести лет.

Кроме того районы с высокой температурой подземного источника находятся в районах с активными геологохимическими вулканами. Эти «горячие точки» образовались на границах тектонических плит в местах, где кора достаточно тонкая. Тихоокеанский регион, часто называют как кольцо огня для многих вулканов, где  есть много горячих точек, в том числе на Аляске, Калифорнии и Орегоне. Невада имеет сотни горячих точек, охватывающих большую часть северной части США.

Есть и другие  сейсмически активные районы. Землетрясения и движение магмы позволяют воде циркулировать. В некоторых местах вода  поднимается к поверхности и  природные горячие источники и гейзеры происходят, такие, как на Камчатке. Вода в гейзерах Камчатки достигает  95° C.геотермальные электростанции

Одна из проблем открытой системы гейзеров является выделение некоторых загрязнителей воздуха. Сульфид водорода — токсичный газ с очень узнаваемым запахом «тухлого яйца» — небольшое количество мышьяка и минералов, выпущенных с паром. Соль также может представлять экологическую проблему. На геотермальных электростанциях расположенных в море значительное количество мешающей соли накапливается в трубах. В замкнутых системах нет выбросов и возвращается вся жидкость доведенная до поверхности.

Экономический потенциал энергоресурса

Сейсмически активные точки не являются единственными местами, где можно найти геотермальную энергию. Существует постоянный запас полезного тепла для целей прямого нагрева  на глубине везде от 4 метров до нескольких километров ниже поверхности практически в любом месте на земле. Даже земля на собственном заднем дворе или в местной школе имеет экономический потенциал в виде тепла, чтобы выдавать  в дом или другие здания.

Кроме того существует огромное количество тепловой энергии в сухих скальных образованиях очень глубоко под поверхностью (4 – 10 км).

Использование новой технологии может  расширить геотермальные системы, где люди смогут использовать это тепло для производства электроэнергии в гораздо большем масштабе, чем обычные технологии. Первые демонстрационные проекты этого принципа  получения  электричества показаны  в Соединенных Штатах и Австралии еще в 2013 году.

Если полный экономический потенциал геотермальных ресурсов может  быть реализован, то это будет представлять огромный источник электроэнергии для  производственных мощностей. Ученые предполагают, что обычные геотермальные источники имеют потенциал 38 000 МВт, который может производить 380 млн МВт электроэнергии в год.

Горячие сухие породы залегают на глубинах от 5 до 8 км везде под землей и на меньшей глубине в определенных местах. Доступ к этим ресурсам предполагает введение холодной воды, циркулирующей через горячие скальные породы и отвода нагретой воды. В настоящее время нет коммерческого применения этой технологии. Существующие технологии пока не позволяют восстанавливать тепловую энергию непосредственно из магмы, очень глубоко, но это самый мощный ресурс геотермальной энергии.

С комбинацией энергоресурсов и ее последовательности, геотермальная энергия может играть незаменимую роль как более чистая, более устойчивая энергетическая система.

Конструкции геотермальных электростанций

Геотермальная энергия — это чистое и устойчивое тепло от Земли. Большие ресурсы находятся в диапазоне в нескольких километрах под поверхностью земли, и еще глубже, до высокой температуры расплавленной породы, называемой магмой. Но как описано выше люди пока не добрались к магме.

геотермальное теплоПрактически везде, в неглубоких местах ниже 3 метров от поверхности земля имеет практически постоянную температуру от 10° до 16°C. Геотермальные тепловые насосы могут использовать этот ресурс для отопления или охлаждения зданий.

Геотермальная теплонасосная система состоит из теплового насоса, воздушной системы доставки (воздуховодов), а теплообменник — это система труб находящихся в неглубоких местах возле здания. В зимнее время тепловой насос извлекает тепло из теплообменника и подает его в крытую систему подачи воздуха. Летом происходит обратный процесс, и тепловой насос переносит тепло от внутреннего воздуха в теплообменник. Тепло, удаляемое из воздуха в помещениях в течение лета также может быть использовано, чтобы обеспечить бесплатный источник горячей воды.

Некоторые геотермальные электростанции используют пар из резервуара для вращения турбины генератора, в то время как другие используют горячую воду для кипения рабочей жидкости, которая испаряется и затем вращает турбину. Горячая вода у поверхности Земли может быть использована непосредственно для тепла. Прямое использование включает отопление зданий, выращивание растений в теплицах, сушки культур, подогрева воды в рыбоводных хозяйствах, а также ряд промышленных процессов, таких как пастеризация молока.

Структура геотермальных электростанций

Традиционная геотермальная энергия — это зрелая технология, которая может обеспечить базовую мощность или круглогодичного теплоснабжения. Ресурс может быть использован только в благоприятных регионах. Соответствие спроса на тепловую энергию от доступных ресурсов может быть сложен, учитывая стоимость и сложность транспортировки тепла на большие расстояния.

В настоящее время наиболее распространенным способом использования энергии из геотермальных источников является метод естественной «гидротермальной конвекции» где воды просачиваются через земную кору, нагреваются, а затем поднимаются к поверхности. После этого нагретая вода используется для привода электрических генераторов.

Существуют три основные конструкции для геотермальных электростанций:

  • В простейшей конструкции сухой пар проходит непосредственно через турбины, а затем конденсатор, где пар конденсируется в воду.
  • Во втором подходе очень горячая вода превращается в пар, который затем может использоваться для привода турбины.
  • В третьем подходе, называемый бинарная система, горячая вода проходит через теплообменник, где нагревает вторую жидкость — например, изобутан — в замкнутом цикле. Изобутан кипит при низкой температуре, чем вода, поэтому он более легко превращается в пар для запуска турбины.
источники энергии

Три конструкции геотермальных электростанций

Технология применения  определяется ресурсом. Если вода поступает из скважины как пар, она может использоваться непосредственно. Если горячая вода достаточно высокой температуры она должна пройти через теплообменник.

Первая скважина для производства энергии была пробурена до 1924 года. Более глубокие скважины были пробурены в 1950-х, но реальное развитие происходит в 1970-х и 1980-х годов.

Прямое использование геотермального тепла

Геотермальные источники также могут использоваться непосредственно для целей отопления. Горячая вода используется для обогрева зданий, выращивания растений в теплицах, сушки рыбы и сельскохозяйственных культур, улучшение добычи нефти, помощи в промышленных процессах как пастеризаторы молока и обогрев воды на рыбных фермах. В США Кламат-Фолс, штат Орегон и Бойсе, Айдахо геотермальная вода используется для обогрева домов и зданий более века. На восточном побережье, город Уорм-Спрингс, Вирджиния получает тепло непосредственно из родниковой воды, используя источники тепла на  одном из местных курортов.

В Исландии практически каждое здание в стране нагревается  горячей родниковой водой. В самом деле Исландия получает более 50 процентов первичной энергии из геотермальных источников. В Рейкьявике, например, (население 118 тыс. чел), горячая вода передается по конвейеру на 25 километров, и жители используют её для отопления и естественных нужд.

Новая Зеландия, получает 10% своей электроэнергии дополнительно. Геотермальная энергетика в России находится в недостаточном развитии, несмотря на наличие термальных вод.

beelead.com


.