Время на усвоение протеина. Белки распадаются на что


На что распадаются белки — на какие составные части распадаются белки жиры и сложные углеводы — 22 ответа

В разделе Домашние задания на вопрос на какие составные части распадаются белки жиры и сложные углеводы заданный автором Камила лучший ответ это БелкиБелки — незаменимая часть пищи. Они идут на построение новых клеток и замену износившихся, активно участвуют в обмене веществ, непрерывно происходящем в организме. Диетологи недаром называют их «протеинами» - от греческого слова «протео» , что означает «занимающий первое место» , или «первенствующий». Ведь белки организма образуются только из белков пищи.Основными источниками белка животного происхождения являются мясо, рыба, творог, яйца. В растительных продуктах тоже содержатся протеины, особенно богаты ими бобовые и орехи.Человек получает белок, употребляя животную и растительную пищу, однако белки пищи отличаются от тех, из которых состоит человеческое тело. В процессе пищеварения белки распадаются на аминокислоты, которые всасываются и используются организмом для образования собственного белка. Наиболее важных аминокислот 22. Из них восемь считаются незаменимыми. Они называются так потому, что организм не может синтезировать их самостоятельно — он получает их только с пищей, Остальные аминокислоты расцениваются как заменимые.Различные белки содержат разные комплексы аминокислот, поэтому очень важно, чтобы организм постоянно получал полный набор необходимых белков. В природе не существует такого продукта, который по своему аминокислотному составу совпадал бы с белками тканей Homo sapiens. Поэтому в рацион необходимо включать белковые продукты как животного, так и растительного происхождения. При этом животных белков должно быть не менее 1/3. Средняя норма белка в суточном рационе взрослого человека составляет 100—120 г, при тяжелой физической работе ее следует увеличить до 150—160 г.Рациональное питание подразумевает сочетание животных и растительных продуктов, такая комбинация обеспечивает сбалансированность аминокислот, способствует лучшему обмену веществ. Наиболее быстро перевариваются белки молочных продуктов. Хорошо усваиваются рыба и мясо (при этом говядина значительно быстрее, чем свинина и баранина). Далее следуют хлеб и крупы. Лучше всего перевариваются белки пшеничного хлеба из муки высших сортов, а также блюда из манной крупы.Продукты, содержащие белокПищевые продукты с повышенным содержанием белков (в расчете на 100 г продукта)ПродуктКоличество белка, гСыры, творог нежирный, мясо животных и птиц, большинство рыб, соя, горох, фасоль, орехиболее 15Творог жирный, свинина, колбасы вареные, сосиски, яйца, крупа манная, гречневая, овсяная, пшено, мука пшеничная, макароныот 10 до 15Хлеб ржаной и пшеничный, крупа перловая, рис, зеленый горошекот 5 до 9,9Молоко, кефир, сметана, мороженое, шпинат, цветная капуста, картофельот 5 до 9,9Все остальные овощи, фрукты, ягоды и грибыот 0,4 до 1,9Однако не следует забывать, что избыток белка в питании может привести к перегрузке печени и почек продуктами его распада. Излишки протеинов приводят к усилению гнилостных процессов в кишечнике, а также накоплению продуктов азотистого обмена в кислотную сторону. Ограничивать потребление белка, безусловно, следует тем, кто страдает подагрой, заболеваниями почек и печени.ЖирыЖиры - наиболее мощный источник энергии. Кроме того, жировые отложения («депо» жира) защищают организм от потери тепла и ушибов, а жировые капсулы внутренних органов служат им опорой и защитой от механических повреждений. Депонированный жир является основным источником энергии при острых заболеваниях, когда аппетит снижается и усвоение пищи ограничивается.Источником жира являются животные жиры и растительные масла, а также мясо, рыба, яйца, молоко и молочные продукты. Жиры содержат насыщенные и ненасыщенные жирные кислоты, жирорастворимые витамины А, В, Е, лецитин и ряд других веществ, необходимых организму. Они обеспечивают всасывание из кишечника ряда минеральных веществ и жирорастворимых витаминов. Жировые ткани - активный резерв энергетического материала. Жиры улучшают вкус пи¬щи и вызывают чувство сытости. Они могут образовываться из углеводов и белков, но в полной мере ими не заменяются.

Ответ от Оскар Дред[новичек]Белки - аминокислотыжиры - глицеринуглеводы -глюкоза

22oa.ru

Откладывается ли избыток белка в рационе в виде жира?

Главная » Теория » Только факты: Откладывается ли избыток белка в рационе в виде жира?

Откладывается ли избыток белка в рационе в виде жираЕсть мнение, причём оно является весьма распространённым, что избыточное употребление белка ведёт к накапливанию жировой прослойки в организме. Причём это не просто обычные разговоры: даже те, кого можно назвать авторитетными и заслуживающими внимания источниками информации, тоже распространяют данную, давно сложившуюся догму. Но вот в чём дело: мнение это является поверхностным и игнорирует сам контекст темы. Вот прямые цитаты из вузовского учебника по физиологии (глава об энергетическом обмене, раздел аминокислотного состава белка):

«Избыточное количество белка, при условии насыщенности глюкозой и энергетической достаточности в целом, способствует отложению жира, а не мышц. Это происходит потому, что, когда организм испытывает достаток глюкозы и избыток энергии, он перенаправляет поток аминокислот от глюконеогенеза и АТФ-синтеза. И вместо этого преобразует их в липиды. В результате чего липиды впоследствии могут быть сохранены в виде жира для использования в дальнейшем».«В период избытка энергии в организме белок, в сочетании с адекватным потреблением углеводов, может быть использован для синтеза жирных кислот».

Вот так однозначно сформулировано: излишек белка организм преобразует в жир. Впрочем, если присмотреться, то не особенно однозначно: обратите внимание на формулировки «могут быть сохранены» и «может быть использован». Разумеется, ведь для того, чтобы делать безапелляционные выводы, необходимо учитывать конкретное метаболистическое состояние человека. А также опираться на подтверждённые научными экспериментами данные. Ведь когда речь идёт о преобразовании белковых аминокислот в жирные кислоты, то реальность этого процесса ещё нужно доказать. Поскольку метаболические пути для преобразования аминокислот в жирные кислоты существуют пока лишь теоретически. В реальности же это маловероятно и может происходить только при полном совпадении целого ряда разнообразных обстоятельств.

Нельзя сказать, что излишек белка совсем невозможно «перегнать в жир». Но то, что это крайне редкое и очень сомнительное явление, можно утверждать с уверенностью. Далее попробуем объяснить, почему это так. Начнём с самого начала.

Переваривание белка стартует в желудке и финиширует в тонком кишечнике

Откладывается ли избыток белка в рационе в виде жира

Несмотря на то, что физический распад белков начинается уже в полости рта, белки доходят до желудка без каких-либо заметных химических преобразований. Далее расщеплению белков на аминокислоты способствует хлористоводородная (соляная) кислота и фермент пепсин (преобразованный из его неактивной формы пепсиногена). После начальной денатурации белков и пептидов и само пребывание белка в желудке завершается.

Полипептиды продукта проходят через пилорический сфинктер желудка в проксимальный отдел тонкой кишки. Здесь и происходит окончательное расщепление белка на аминокислоты и их всасывание в стенки проксимального отдела (или двенадцатиперстная кишка, другое название). В этой кишке присутствует значительное количество пищеварительных ферментов, нужных для того, чтобы расщепить оставшиеся полипептиды на их отдельные аминокислоты. А также некоторое незначительное количество вспомогательных ди- и три- пептидов.

Как только химическая структура белка полностью разбита ферментами, свободные аминокислоты и ди-и три-пептиды могут беспрепятственно поглощаться клетками тонкого кишечника. Где некоторые из них (особенно глютамин) используется для получения энергии тут же, а остальные – проходя в печёночно-портальное кровообращение. Те, что проходят в этот оборот, предназначаются для печени и прочих жизненно важных органов.

Требования к усвоению белка

Откладывается ли избыток белка в рационе в виде жира

Прежде чем мы перейдём к печени и проследим дальнейший путь метаболизма аминокислот, разрешить затронуть ещё одно распространённое утверждение. Которое многие из вас, возможно, слышали, приблизительно в таком виде:

«В среднем человек способен поглощать только 30 граммов белка в один присест. Всё, что выше этого значения, будет накапливаться в организме виде жира».

В отличие от утверждения, приведённого в начале статьи, это мнение вообще не предлагает никакого обоснования. Более того, это совершенно дурацкое, ни на чём не основанное выражение. Хотя оно и звучит как «аргумент соломенного человека», не выдерживая никакой критики, эту «жемчужину мудрости» можно найти даже во многих статьях, написанных профессиональными диетологами.

Например, давайте возьмем кого-нибудь, кто ест не тридцать, а все сорок граммов белка «в один присест» (что бы этот «термин» ни значил). Если мы предположим, что только 30 граммов может усвоиться «за один раз», то можно с уверенностью сказать, что «лишние» 10 граммов просто выйдут из организма естественным путём, т.е. с калом. Потому что для того, чтобы их «отложить в жир», их нужно для начала усвоить и переработать, не так ли?

Способность кишечника усваивать белок находится в пределах около 95ти % (т.е. только ~2 грамма не будет всасываться, в нашем примере еды). Тем не менее, основываясь на этом популярном утверждении, каким образом вы должны «перегнать» 10-граммовый «избыток протеина» в жир, если Вы не можете даже (якобы) усвоить его, для начала? Большинство людей не понимают разницы между употреблением и усвоением, и совершают эту ошибку.

Повторим ещё раз: для того, чтобы сохранить или переработать питательные вещества, они должны быть в первую очередь усвоены организмом.

Суть в том, что ваш организм сам определит своё количество белка, нужного ему на данный момент, независимо от всяких мифических «норм». И это значение будет отличаться от случая к случаю. В конце концов, 30 граммов – это просто произвольное число, которое укрепилось в «народном фольклоре» и не имеет корней в научных доказательствах.

Ну, а теперь давайте вернёмся к первоначальному утверждению о том, что избыток белка, который уже всасывается, при условии достаточного количества энергии и углеводов, преимущественно преобразуется в жирные кислоты и отложится в виде жира.

Печень – первичное место для обмена аминокислот

Как мы уже рассмотрели, часть аминокислот, освобождённых из тонкой кишки, предназначены для печени. Более половины всех аминокислот проходят обработку в печени. Печень выступает практически в качестве монитора для впитывания аминокислот и регулирует их метаболизм, согласно общему метаболическому состоянию организма и его потребностям. Благоприятные возможности синтеза жирных кислот из аминокислот на данном этапе существуют, спора нет. Но это всё-таки далеко от утверждения, что весь лишний белок, при определённых условиях, будет накапливаться в виде жира.

Результаты научного эксперимента

Откладывается ли избыток белка в рационе в виде жира

Ознакомьтесь с одним из наиболее жёстко контролируемых, а потому и внушающих доверие, исследований нашего времени.В 2012 году Джордж Брей (доктор Биомедицинского исследовательского центра Пеннингтона) и его коллеги предприняли попытку изучить на практике, как повлияет уровень белка в рационе на увеличение веса и состав тела. Из людей, имеющих приблизительно одинаковый, нормальный вес, выделили три группы, получающие высококалорийное питание: по низкобелковой (5%) схеме, с нормальным содержанием белка (15%), и с повышенным содержанием белка (25 проц.) в рационе.

25 испытуемых госпитализировали в метаболические палаты и кормили из расчёта 140% от минимальной суточной потребности организма (+1,000 ккал/день), в течение 8ми недель подряд. Потребление протеина составило: около 47 г (0,68 г/кг) для группы низкого содержания белка; 140 г (1,79 г/кг) для обычной группы белков; 230 г (3 ровно г/кг) для группы высокого содержания белка. При этом уровень углеводов поддерживался на постоянном значении между всеми группами (~41-42% от общего числа калорий). В течение 8ми-недельного периода состав тела испытуемых измеряли дважды в неделю, используя двойную рентгеновскую абсорбциометрию (метод, признанный в наше время «золотым стандартом» для измерения состава тела).

В ходе исследования все испытуемые набирали вес с почти идентичным увеличением жировых отложений между тремя группами (если быть точным, группа с повышенным содержанием белка в рационе «нарастила» чуть меньше жира, чем группа с низким белком, но не значительно). В группе с низкобелковой диетой люди набрали наименьшее количество веса (3,16 кг). А с нормальным и высоким уровнем белка набрали примерно в два раза больше общего веса (6,05 и 6,51 кг соответственно).

Однако, дополнительные 3 кг веса набраны были в группах с нормальным и повышенным содержанием белка прежде всего за счёт прироста мышечной массы, а не жира. В то время как в группе с высоким содержанием углеводов в рационе люди набрали именно, практически стопроцентный, жир. Процитирую доктора Брея с его соавторами: «Килокалории, полученные из углеводов, способствовали увеличению жира в организме. Практически всё, что набрали испытуемые в высокоуглеводной группе, было жиром. В отличие от высокобелковой группы, в которой протеин способствовал определённому приросту мускульной массы в организме, но не увеличению жировой прослойки».

Разумеется, нельзя с точностью определить состав и качество мышечной массы, которая была получена. Но можно с уверенностью сказать, что излишки белка не используются в основном для образования жира. Можно предположить, что избыточный белок, который не был использован для синтеза, в основном преобразовывается в глюкозу (посредством глюконеогенеза), а затем хранится в виде гликогена, с сопровождающим количеством воды.

В любом случае, это не жир.

Итак, подведём итог

Испытуемые съедали на ~1,000 ккал в день больше, чем им нужно для поддержания своей массы тела, в течение 8ми недель (это, кстати, не является лёгкой задачей, даже для волевого человека). Результаты эксперимента показали, что белок способствует увеличению, главным образом, мышечной массы тела, а не жировой прослойки. Это опровергает распространённое заблуждение, что в случае достатка энергии и глюкозы все лишние аминокислоты будут преобразованы в жирные кислоты и будут накапливаться в виде жира.

В реальности же сидевшие на высокобелковой диете превзошли другие группы по общему приросту массы тела, но при этом всё равно не набрали дополнительного жира, по сравнению с группой низкого содержания белка и высокого содержания углеводов в рационе. Вот такой контраст реальности с тем, что большинство людей принимают за истину.

Открытым остаётся и вопрос о том, какое (если не пресловутые «30 г», то сколько?) максимальное количество белка (аминокислот) организм может эффективно использовать, прежде чем преобразует их в жирные кислоты и будет «копить» в виде жира? С учётом результатов данного исследования представляется, что эта цифра в любом случае выше, чем распространённое мнение. Верхний показатель усваиваемости белка, в любом случае, сугубо индивидуален и зависит от огромного количества факторов. Таких, как генетика, образ жизни, интенсивность занятий спортом и общего расходования энергии, и т.д.

Выводы

Переедание на 1000 килокалорий в день в течение 8ми недель, при условии поддерживания высокобелкового рациона, не приводит к сколько-нибудь заметному приросту или дополнительному увеличению жировой прослойки. Это доказано на практике. А вот биохимические процессы, необходимые для преобразования аминокислот в жирные кислоты, никоим образом не изучены и существуют пока лишь в теории.

Опираясь на данные указанного исследования, можно с уверенностью утверждать, что шансы на то, что избыток белка будет способствовать наращиванию размеров жировой прослойки, крайне невелики. Это относится к питанию как в нормальном режиме, так и в «усиленном», высококалорийном. Избыток белка увеличивает, в первую очередь, мышечные ткани, и только теоретически, при совпадении определённых обстоятельств – жир.

Понравилась статья? Поделиться с друзьями:

www.kandeleria.ru

Сколько времени нужно на усвоение белков

Попадая в желудок, протеины распадаются на цепочки аминокислот. В процессе участвуют особые ферменты – трипсин и пепсин, а также соляная кислота. Под их воздействием молекулярные связи между аминокислотами разрываются. Для наглядности можно представить, что ферменты – это ножницы, которые режут белки на маленькие части. Потом эти измельченные протеины беспрепятственно усваиваются организмом.

Как происходит процесс усвоения белков?

В процессе пищеварения белки распадаются на более мелкие цепочки аминокислот. Эти цепочки имеют разную длину. Выделяют одиночные аминокислоты, которые называются пептидами, двойные (дипептиды) и тройные (трипептиды). Всего лишь 5% белков, поступающих в пищеварительную систему, выводятся с фекалиями.

Процесс всасывания аминокислот через стенки толстого кишечника осуществляется при участии специальных структур-переносчиков. Каждый из этих переносчиков транспортирует в кровоток определенную аминокислоту. Некоторые из них способны переносить несколько разных типов аминокислот.

 Таким образом, если человек предпочитает пищу, богатую каким-либо одним видом аминокислот, то переносчик, который ее транспортирует, будет перегружен и не сможет участвовать в переносе других видов аминокислот.Отсюда становится понятно, что если в организм попадает слишком большое количество аминокислоты одного типа, то возникает нехватка других аминокислот.Протеин – это пищевая добавка

Протеин – это пищевая добавка с высоким содержанием белка, и почти полным отсутствием жиров и углеводов. Применяется для наращивания мышечной массы, а также для ее поддержания при нагрузках.

Помимо переносчиков, транспортирующих одиночные аминокислоты, существуют переносчики, переносящие в кровоток ди- и трипептиды. Цепочки, состоящие из более чем четырех аминокислот, не могут всасываться напрямую через стенку кишечника и должны расщепляться на более мелкие составляющие.Биохимия процесса всасывания протеинов и их транспортировки в кровоток имеет значение для оценки эффективности ряда пищевых добавок. Первыми из них являются активно рекламируемые «оральные пептидные гормоны» (GH или IGF-1). Поскольку аминокислотные цепочки пептидных гормонов гораздо длиннее, чем соединения из четырех аминокислот, при приеме через рот просто не существует механизма, позволяющего этим пептидным гормонам попасть в кровоток в активной форме. Отсюда возникает вопрос: а соответствует ли истине состав и эффективность этих добавок? Ответ — скорее всего, нет.

Ферменты, расщепляющие белок, легко проделают то же самое с орально принимаемыми пептидными гормонами, разбив их на более мелкие аминокислотные цепочки, с которыми произойдет то же самое, что и с пищевыми белками.

Проще говоря, не зря GH, IGF-1 и инсулин вводят с помощью инъекций — ведь в желудке они расщепляются на короткие пептидные цепочки, теряя все свои свойства и эффекты гормонов.Это же относится и к эндокринным препаратам. Для тех, кто не занимался бодибилдингом в далекие 80-е, поясним: эндокринными препаратами назывались высушенные экстракты из желез внутренней секреции. Предполагалось, что они будут способствовать улучшению работы аналогичных желез человека, принимающего такой препарат. Т.е. препарат для щитовидной железы содержал в себе высушенную щитовидную железу (состоящую, как и большинство тканей организма, из протеина), и его прием должен был способствовать улучшению работы щитовидки пациента. Аналогичный препарат для улучшения функции половых желез содержал в себе перемолотую ткань семенников. Считалось, что прием этого препарата благотворно сказывается на мужских способностях и уровне мужских половых гормонов. Но, будучи крупной молекулой белка, любой эндокринный препарат будет расщеплен в желудке на более простые короткие цепочки аминокислот, и его воздействие на организм окажется сродни воздействию любого обычного пищевого белка, что делает абсурдными любые заявления о замечательных свойствах эндокринных препаратов.

Цельные протеины, гидролизаты и свободные аминокислоты

Тремя основными вариантами источника белка в настоящее время являются: цельный белок (обычная пища), частично расщепленные протеины, называемые гидролизатами (к ним относится большинство протеиновых добавок), а также свободные аминокислоты (продукты, состоящие из отдельных пептидов). Все эти варианты имеют как определенные преимущества, так и недостатки.Важным является понимание того, что при попадании аминокислот в кровоток они перестают различаться между собой, если только их предварительно не пометить радиоактивными изотопами в исследовательских целях. Фактически, отличить аминокислоты, только что поступившие с пищей, от аминокислот, уже находившихся к этому моменту в организме человека, практически невозможно. Таким образом, с точки зрения физиологического действия на организм, аминокислоты, полученные, скажем, из съеденного вами яичного белка, ничем не будут отличаться от аминокислот, принятых в капсулированном виде, т.е. разницы между цельным, частично расщепленным протеином и свободными аминокислотами нет никакой, поскольку в итоге все они, после переваривания, в виде аминокислот оказываются в кровотоке.Тем не менее, протеины из различных источников по разному усваиваются организмом. Цельный белок медленнее усваивается и позже попадает в кровоток, нежели гидролизаты, поскольку последние уже частично расщеплены. В этом и заключается смысл приема гидролизатов сразу по окончании тренировки — чтобы аминокислоты как можно быстрей были усвоены и направлены организмом на восстановление мышц.

Три основных источника белка

Три основных источника белка — это обычная пища, протеиновые добавки и продукты, состоящие из отдельных пептидов.

Вероятным преимуществом свободных форм аминокислот является возможность их комбинирования в необходимых пропорциях. Однако для этого необходимо иметь представление об этих пропорциях. Кроме того, ди- и трипептиды (получающиеся при расщеплении цельных белков или гидролизатов) усваиваются несколько быстрее и лучше, чем аминокислоты в свободной форме. Вероятнее всего, это происходит за счет наличия в организме специфических переносчиков, рассчитанных именно на ди- и трипептиды. Такая более низкая (в сравнении с гидролизатами) усвояемость свободных аминокислот в сочетании с их более высокой стоимостью (при расчете на грамм) делает свободные аминокислоты не самой эффективной формой протеиновых добавок. Конечно, некоторые аминокислоты, например, глютамин или аминокислоты с разветвленными цепочками (ВСАА), могут принести определенную пользу, если принимать их отдельно.

Как происходит процесс усвоения белков?

Перед тем, как белки поступят в человеческий организм необходимо, чтобы они разбились на отдельные аминокислоты и пептиды.

Процесс пищеварения берет свое начало в желудке, там находится соляная кислота, именно с ее помощью денатурируются белки и расщепляются проферментами. В результате возникает фермент, который называется пепсин. Он отвечает за разрушения в длинных пептидах денатурированных цепей аминокислот.Следующей остановкой длинных пептидов является тонкая кишка. В этом месте они разбиваются на ферменты – химотрипсин и трипсин. Когда фрагменты белков достигают длины трех или меньше аминокислот, то они поглощаются тонким кишечником.Пищеварительная система

На рисунке представлен путь передвижения пищи по пищеварительной системе начиная от  ротовой полости кончая прямой кишкой.

Коэффициент усвояемости белка

Существуют разные переменные , которые способны повлиять на процесс усваивания белка в организме. Некоторые из них являются самыми важными.

Многим известны быстродействующие белки, среди них – гидролизованный сывороточный протеин. Также существует протеина медленного воздействия, его название – казеин.

В гидролизованном сывороточном протеине находятся короткие пептиды, так как этот процесс уже является гидролизом при производстве. Казеин же формирует массу, находясь в желудке, она на протяжении некоторого времени переваривается.Организм может намного проще усваивать некоторые виды белка, а с некоторыми может справляться хуже. В результате исследований было доказано, что большее количество аминокислот транспортируется в пищеварительной системе без усвоения соевого белка, по сравнению с такой же долей сыворотки.Также есть и другие питательные вещества, которые поступают в наш организм вместе с твердой пищей. Они тоже способны влиять на поглощение. Если на пустой желудок употреблять вязкие жидкости (к примеру, протеиновый коктейль), то среднем нужно полтора часа для усвоения. За это время продукт успевает дойти до конца тонкой кишки.Если белок употреблять в виде твердой пищи, то время усвоения может быть увеличено. Следует знать, что одиночные аминокислоты, которые вырабатываются в процессе распада белка, составляют по усвоению конкуренцию моносахаридам сахара.Источник питанияУсвояемость протеина(%)
Яйца97
Молоко и сыр97
Белки смешанной диеты96
Мясо и рыба94
Зерновые86
Соя78
Рис76

Если в пищеварительной системе есть пониженная кислотность желудка, которая спровоцирована применением антацидов, то это может влиять на замедление пищеварительного процесса, и отобразится на его эффективности. В процессе пищеварения кислота является очень значимой.

Что способствует усвоению протеина?

Белки отличаются по скорости усвоения организмом. Самым быстроусвояемым является сывороточный протеин. Их этого продукта в час может поглотиться восемь-десять грамм аминокислот. На втором месте находятся яйца – из них организм может на протяжении одного часа поглотить 1,3-1-4 грамма аминокислот. Наше тело это компенсирует замедлением скорости продвижения через пищеварительный тракт, чтобы дать больше времени для организма, чтобы весь белок был использован как элемент питания.Такого эффекта можно достичь при наличии в рационе белков, также моно добавить наполнитель в виде клетчатки. Кроме этого можно принимать такие добавки, как энзимы.Пищеварительные ферменты и кислота оптимизируют распад белков. Есть фирмы, в продуктах которых добавлена протеолитические фермента, которые помогают белку усваиваться. Также чтобы повысить эффективность распада белка, можно обеспечить себя антацидами. Они являются лекарственными препаратами, которые предназначены для лечения заболеваний желудочно-кишечного тракта, связанные с зависимостью от кислоты. Если сочетать белки быстрого усвоения с белками медленного усвоения, то можно гарантировано получить длительное переваривание белков и их всасывание.

Антациды - это лекарственные препараты

Антациды — это лекарственные препараты, которые помогают повысить эффективность распада белка и  предназначены для лечения заболеваний желудочно-кишечного тракта.

Антикатаболическое действие

Антикатаболический эффект первого вещества на порядок больше. Это обусловлено постепенным освобождением аминокислот — в лучшем случае данный процесс длится около семи часов. Сывороточный протеин дает качественный синтез протеина в силу мгновенного усвоения. Эта особенность приводит к эффективной оксидации, что говорит о быстром выводе сывороточного протеина (процесс высвобождения длится приблизительно полчаса).Многие задаются вопросом: можно ли сымитировать антикатаболическое действие казеина с помощью частого приема сывороточного протеина? Поскольку вышеупомянутый эффект имеет отношение к замедленному высвобождению аминокислот, то, возможно, путем частого приема сывороточного протеина можно достичь похожего эффекта?!

Сывороточный протеин

Сывороточный протеин – это побочный продукт производства сыра, который продается как пищевая добавка в виде водорастворимых протеиновых порошков и коктейлей.

Сколько усваивается протеин

У исследователей, которые тестировали действие молочного протеина, возникла такая же идея. Впоследствии ими были разработаны и обнародованы исследования, где они сравнивали усвояемость и затраты организмом человека разновидностей протеина, который являлся производным вышеупомянутых органических веществ.Первостепенной целью экспериментов являлось установление баланса лейцина по завершению потребления его участниками разных типов молочного протеина.

Лейцин представляет собой аминокислоту, имеющую разветвленную цепь. Ученые вводили ее инъекциями, при этом не забывали помечать радиоактивными изотопами, дабы с высокой точностью отслеживать ее воздействие на человеческий организм.

В исследовании принимало участие 22 человека, в ходе эксперимента их поделили на четыре группы, для того чтобы изучить скорость усвоения протеина. Каждая группа принимала один из описанных ниже препаратов:
  1. Определенное количество казеина, рассчитанного на одного человека.
  2. Одна доза свободных аминокислот, которые должны были сымитировать состав казеина.
  3. Определенное количество сывороточного протеина (так же на одного человека).
  4. Сывороточный протеин в нескольких дозах, которые принимались поочередно, дабы сымитировать протеин с медленной усвояемостью.

Каждый состав пищи включал в себя около тридцати грамм протеина, а последовательная дозировка содержала тринадцать порций, которые давались через каждые двадцать минут. В целом, длительность этого периода составляла 4 часа. Однако и в данном случае суммарный объем протеина равнялся тридцати граммам, равно как и в иных приемах пищи.

Время усвоения протеина

Время усвоения протеина зависит от конкретного вида, например, изолят сывороточного протеина поступает к клеткам мышечных тканей уже через 40-55 минут после приема, а казеин усваивается намного дольше – в течение 4-5 часов.

Как и предполагалось, источники высокомолекулярного органического вещества — протеина, который мгновенно усваивался, вызвали увеличение количества аминокислот, а также стали причиной эффективной оксидации. Однако когда сывороточный протеин потреблялся многочисленными дозировками на протяжении определенного времени, тем самым имитируя быструю абсорбцию казеина, он причинял понижение распада протеина. Иными словами, оказывал антикатаболическое действие.Этот эксперимент дал подтверждение тому, что быстро адсорбирующиеся протеины обуславливают значительное возрастание их синтеза, чего не происходит при потреблении медленноусвояемых протеинов.

Существенные уровни синтеза не представляются возможными без увеличения аминокислот. Данного результата можно добиться, принимая в пищу быстроусвояемые протеины. Однако мгновенная абсорбция обуславливает еще и мгновенную оксидацию аминокислот. Это объясняет тот факт, что буквально через полчаса все выходит из человеческого организма.

Как мы видим, скорость усвоения протеина весьма разная.

Усвоение казеина

Данный эксперимент на базе следов лейцина доказал, что задержка азота становится больше при потреблении протеинов, которые медленно усваиваются. Теперь мы можем говорить о том, что эффект находится в зависимости от увеличенного уровня аминокислот в системе кровообращения через длительное время, а эта особенность уже предоставляется казеином.Следует отметить, что казеин створаживается, наряду с этим скорость расщепления протеина способствует высвобождению аминокислот на долгосрочный период. Данный эффект аналогичен с тем, что получается, когда мы потребляем лекарственные препараты с оставленным временем выброса биологически активного вещества.

Казеин – это богатый источник протеина

Казеин – это богатый источник протеина продолжительного действия. Медленное переваривание казеина дает эффект длительного и постепенного насыщения мышц аминокислотами, в то время как сывороточный протеин уже прекращает свое действие.

Естественные пептиды казеина также не стоит оставлять без внимания. Определенные виды дают «заторможенный» эффект, приводя впоследствии к медленной деятельности кишечного тракта. В конечном итоге это пагубно влияет на пищеварение.

Усвоение сывороточного протеина

Эксперимент, описанный выше, является наглядным подтверждением того, что можно получить подобный казеину эффект путем приема сывороточного протеина учащенными и последовательными дозами. Заметим, что аминокислоты медленноусвояемого протеина окисляются на протяжении получаса, поэтому наиболее рациональной схемой станет употребление его через каждые два часа.

Поддержка благоприятного азотистого баланса — это неотъемлемая составляющая в процедуре строительства мышечных волокон.

А добиться такого эффекта можно лишь с помощью учащенных дозировок протеина с перерывами не больше 2–3 часов, либо при применении особых протеиновых добавок с казеином. Это нужно брать в учет, если у вас не так много времени, чтобы часто употреблять маленькие порции насыщенной протеином пищи.Существует множество видов таких добавок, богатых не только протеином, но и витаминами, что немаловажно для роста мышечных волокон и поддержания здоровья в целом.

Сравнение «быстрых» и «медленных» протеинов: прорыв или очередной слон из мухи?

Недавно опубликованная работа, посвященная сравнению «быстрых» и «медленных» протеинов, дала толчок развитию совершенно нового направления в маркетинге и созданию очередной генерации протеиновых пищевых добавок. Эта идея очень похожа на знаменитый гликемический индекс, используемый для углеводов и отражающий скорость, с которой углеводы расщепляются, всасываются и действуют на уровень глюкозы и инсулина в крови.При проведении данного исследования здоровым индивидуумам с обычным потреблением протеина (16% от общего количества потребляемых калорий) после 10-часового голодания вводилось 30 г сывороточного белка либо 30 г казеина. Предварительные результаты исследования показали, что после приема сывороточного белка уровень лейцина в крови (используемый в качестве индикатора различных обменных процессов в организме) быстро возрастал, достигая максимума через 1 час после принятия белка. Однако он также быстро и понижался, возвращаясь к исходному уже по истечении 4 часов. Казеин же, напротив, гораздо медленнее повышал уровень лейцина, и его пиковое значение (через 1 час после принятия белка) было меньшим, чем у сывороточного протеина, но такой повышенный уровень лейцина фиксировался в организме на протяжении гораздо большего времени — 7 часов, как это видно из представленного ниже графика.

Схема усвоения медленного и быстрого протеина

Схема усвоения медленного и быстрого протеина.

Исследователи обнаружили, что сывороточный протеин стимулирует синтез белка (т.е. образование более крупных молекул протеина из отдельных аминокислот) и не оказывает влияния на его катаболизм (т.е. распад крупных молекул белка на отдельные аминокислоты), тогда как казеин снижает скорость распада белка, не оказывая влияния на его синтез.

Еще одним результатом наблюдений стало то, что прием сывороточного протеина сильнее способствовал окислению лейцина, чем казеина (31% против 24%), вероятно, из-за более высокой скорости усвоения. И, наконец, лейциновый баланс (определяемый как отношение количества потребленного к полученному организмом лейцина) у казеина оказался выше, чем у сывороточного белка.С одной стороны, результаты воздействия на синтез и распад белка представляются весьма интересными, и по их результатам сывороточный белок можно отнести к «анаболическим» протеинам, тогда как казеин будет, скорее всего «антикатаболическим» белком. По крайней мере, эта зависимость будет сохраняться в течение 7 часов. Тем не менее, по нескольким причинам показатель запаса лейцина в организме не менее важен, поэтому можно говорить о превосходстве казеина, способствующего накоплению в организме большего количества лейцина. Различные интерпретации данного исследования будут зависеть, прежде всего, от того, какой продукт намеревается всучить вам их автор: казеин, сывороточный протеин или их комбинацию.По результатам данного исследования уже появилось несколько статей, например, в различных изданиях для бодибилдеров. В них авторы предлагают использовать сывороточный белок и казеин для достижения различных физиологических эффектов и ускорения роста мышечной массы. Протеиновые добавки, содержащие смеси из так называемых «быстрых» и «медленных» белков, уже появились на рынке. Покупателей убеждают, что с их помощью можно одновременно достичь увеличения синтеза белка, снижения скорости их распада и стабилизации уровня аминокислот в крови.Виды протеина

На рынке спортивного питания большое количество протеинов, протеиновых порошков и смесей и комплексов с добавками. Это позволяет скомбинировать каждому свой индивидуальный комплекс включающий различные виды протеина: соевый, яичный, казеиновый, сывороточный.

Сказать, что значение данного исследования раздули до невероятных размеров — значит не сказать ничего. На целый ряд важных вопросов не обратили никакого внимания, их-то мы и рассмотрим в нашей статье. Первым и, вероятно, наиболее важным, является тот факт, что перед приемом белка испытуемые подверглись 10-часовому голоданию. При таком подходе скорости синтеза и распада белка значительно отличаются от подобных показателей в середине дня после приема пищи.

После ночного голодания скорость синтеза мышечного белка в организме может быть на 50% ниже, чем после приема пищи. Это означает, что эффективность любой белковой пищи утром будет выше, чем в любое другое время суток.

Кроме того, хорошо известно, что смешение различных питательных веществ (т.е. углеводов и протеинов или углеводов, протеинов и жиров) изменяет скорость их проникновения в кровоток. Аналогичным образом на скорость всасывания оказывает влияние наличие в организме непереваренной пищи, оставшейся от предыдущей трапезы. Все, о чем можно говорить по результатам рассматриваемого исследования, — это эффект, который произведет на организм принятие сывороточного белка или казеина натощак, после 10-часового голодания. Т.е. просто невозможно делать серьезные выводы о том, что произойдет при употреблении сыворотки или казеина в сочетании с пищевыми жирами (например, содержащимся в спортивных напитках льняным маслом) или углеводами, а также, если прием протеина будет происходить в другое время суток.Наконец, еще одним вопросом без ответа остается то, где именно оказался протеин, синтезированный во время проведения эксперимента с сывороточным белком. Т.е. методология проведения исследования позволила ученным лишь отметить, что белок был синтезирован и остался в организма, не проливая свет на то, где конкретно синтезировался белок (фактически, это относится к большинству исследований метаболизма белка в человеческом организме — как правило, без биопсии очень сложно определить, куда направляется синтезированный белок). Поскольку задачей культуристов является действие на синтез именно мышечного белка, а не просто повышения синтеза белка в организме в целом, знание того, куда направляется синтезируемый белок, весьма важно. Достаточно лишь сказать, что синтезируемый белок может накапливаться как в мышцах, так и, скажем, в печени. Однако такие признания не будут способствовать росту продаж пищевых добавок. В последующих статьях мы попытаемся ответить на возникающие вопросы, более подробно рассмотрев вопрос синтеза и накопления белка в организме после принятия пищи.

В качестве заключительного замечания по этой теме хотелось бы отметить, что большинство спортсменов, серьезно занимающихся бодибилдингом, и тек едят богатую протеинами пищу каждые 2-3 часа. Поскольку при опыте с сывороточным белком повышенный уровень лейцина сохранялся в крови до 4 часов, то так ли уж важно, какой белок — сывороточный или казеин — вы будете употреблять, если белок поступает в ваш организм каждые три часа? И если казеин поддерживает повышенный уровень лейцина на протяжении 7 часов, а цельные белки усваиваются еще дольше, то так ли уж обязательно соблюдать этот 3-часовой график приема?Кое-кто предлагал принимать смесь из сывороточного белка и казеина непосредственно перед отходом ко сну, чтобы обеспечить постоянный приток в кровь аминокислот. В этом есть доля правды. С другой стороны, цельный белок из обычной пищи, в сочетании с углеводами, жирами и клетчаткой, будет работать ничуть не хуже.

Последний вопрос, возникающий по результатам данного исследования, относится к употреблению протеинов после тренировки. Подумайте — даже сывороточному протеину потребовался целый час для того, чтобы повысить уровень лейцина в крови до максимума! Если стоит задача восполнения образующейся в результате тренировки нехватки аминокислот, то не лучше ли употреблять белки за час-другой до тренировки, чтобы к ее окончанию аминокислоты как раз и попали бы в кровоток?

Время употребления разных протеинов

Как вы понимаете, время усвоения сывороточного протеина отличается от казеинового, поэтому разберемся, когда какой из них лучше принимать для достижения максимальной эффективности:

  1. В напряженные рабочие или учебные дни без обеда лучше выпейте казеиновый коктейль еще утром, а разовый прием сывороточного белка вам не даст хорошего результата. Казеин будет медленно отдавать аминокислоты в кровь, поддерживая анаболизм.
  2. Перед сном тоже лучше пить казеин, скорость усвоения которого достаточно медленная. Он будет поддерживать мышечные волокна до пробуждения.
  3. После тренировки закачайте аминокислоты в мышцы, употребив сывороточный протеиновый коктейль. Мощный и кратковременный аминокислотный выброс будет кстати.
  4. Если вы занимаетесь бодибилдингом и имеете свободный образ жизни, употребляйте сывороточный протеин регулярно. Для этого разделите дневную порцию белка на маленькие дозы. Максимальный промежуток должен быть не более трех часов.
  5. Зная, что вам долгое время не удастся поесть, выпейте казеин, который надолго насытит ваш организм.

sportzal.com/post/1621/food4strong.com/blog/usvoyaemost-proteinatutknow.ru/sportivnoe-pitanie/1890-skorost-usvoeniya-proteinov.html

sportpitguru.ru

Расщепление белков в пищеварительном тракте

Белки«Расщепление белков в желудочно-кишечном тракте» — это первая из четырёх статья из цикла «Обмен белков в организме человека»

В течение всей жизни в организме происходят одновременно разрушения и биосинтез клеток и тканей. Эти противоположные, но тесно связанные между собой процессы — ассимиляция и диссимиляция — составляют основу жизни. Итак, в организм должны постоянно поступать вещества, необходимые для построения новых клеток. Главная роль в этом принадлежит белкам, так как ни углеводы, ни жиры не могут их заменить в образовании основных структурных элементов органов и тканей. Среди различных преобразований, присущих живой материи, основное место занимает белковый обмен.

В связи с тем, что белки являются азотсодержащими веществами, одним из методов, характеризующим состояние белкового обмена в организме, может быть определение баланса азота. У здорового человека при нормальном питании отмечается состояние белкового равновесия, когда поступление азота компенсирует его затраты. При отрицательном азотистом балансе количество выведенного азота превышает его  количество, поступающее в составе белков. Такое состояние может наблюдаться при нарушении деятельности пищеварительной системы, белковом голодании и т п.

Положительный азотистый баланс бывает в тех случаях, когда количество выведенного азота меньше того, что поступает в составе белков. Это характерно для растущего организма, при беременности, при повышении активности процессов биосинтеза белка (например, при физических нагрузках).

Для синтеза белков в организме необходимы различные аминокислоты. Некоторые из них, образующиеся в самом организме, называются заменимыми. Аминокислоты, не синтезирующиеся в организме человека, называются незаменимыми. Они должны регулярно поступать с пищей. Белки, в состав которых входят заменимые и незаменимые аминокислоты в соотношениях, приближающихся к таковым в организме, называют полноценными.

Среди пищевых продуктов практически нет белков, которые полностью соответствуют этим требованиям. Наиболее близки к полноценному белки материнского молока, куриного яйца. Итак, для полного обеспечения здорового организма полноценными белками в суточный рацион должны быть включены различные пищевые продукты как животного, так и растительного происхождения.

Для нормальной жизнедеятельности человека необходимо поступление такого количества полноценного белка, которое будет покрывать все потребности организма. Оно зависит от пола, возраста, интенсивности труда и т.д. С учетом этих факторов разработаны нормы белкового питания. Недостаточное потребление белков приводит к нарушению процессов жизнедеятельности, ухудшению здоровья, а длительное белковое голодание неизбежно заканчивается гибелью.

Белки необходимы для организма, прежде всего, как пластический материал, из которого строятся клетки всех тканей, органов и систем. Однако пищевые белки не могут быть использованы без предварительного расщепления в организме, так как они имеют сложную структуру и видовую специфичность.

Расщепление (гидролиз) белков на аминокислоты, которые лишены видовой и тканевой специфичности, происходит в желудочно-кишечном тракте.

Расщепление белков в пищеварительном тракте (ЖКТ).

Переваривание питательных веществ (белков, углеводов, липидов) — это процесс гидролиза соответствующих соединений, входящих в состав продуктов питания, который происходит в пищеварительном тракте и приводит к образованию простых биомолекул. Последние за счет действия специфических механизмов мембранного транспорта всасываются в кровь или лимфу.

Переваривание белков начинается в желудке под действием желудочного сока. В состав желудочного сока входит соляная кислота, которая вырабатывается обкладочными  клетками слизистой оболочки желудка. Она денатурирует белок, облегчает его  последующее расщепление. В состав желудочного сока входят кислые фосфаты и некоторые органические кислоты. Соляная кислота способствует превращению профермента пепсиногена, который секретируется главными клетками слизистой оболочки желудка, в активный протеолитический фермент пепсин.

Оптимальная концентрация водородных ионов для пепсина составляет 1,5 — 2,5, что соответствует кислотности желудочного сока в процессе пищеварения. При увеличении рН среды до 6,0 (в кишечнике) пепсин теряет свою активность. Пепсин относится к однокомпонентным ферментам, то есть к ферментам-протеинам. За сутки в желудке вырабатывается около 2 г пепсина.

Каталитическая активность пепсина желудка очень высока. Он катализирует расщепление пептидных связей в молекуле белка, образованных аминогруппами ароматических и дикарбоновых аминокислот. В результате действия пепсина образуются полипептиды различной величины и отдельные свободные аминокислоты.

Кроме пепсина, в желудочном соке содержится протеолитический фермент гастриксин, оптимальное значение рН которого находятся в пределах 3,5 — 4,5. Гастриксин вступает в действие на последних этапах переваривания пищи в желудке.

В желудке грудных детей обнаружен сычужный фермент — химозин. Оптимум действия этого фермента рН 3,5 — 4,0. Под влиянием химозина в присутствии солей кальция казеиноген молока в ходе гидролиза превращается в казеин и молоко свёртывается.

Легче других в желудке перевариваются альбумины и глобулины животного и растительного происхождения; плохо расщепляются белки соединительной ткани (коллаген и эластин) и совсем не расщепляются кератин и протамины.

Частично переваренная полужидкая масса питательных соединений, которая образуется в желудке (химус) периодически поступает через пилорический клапан в двенадцатиперстную кишку. В эту часть пищеварительного канала поступают из  поджелудочной железы протеолитические ферменты и пептидазы, которые действуют на пептиды, поступающие из желудка. Каталитическое действие этих ферментов происходит в слабощелочной среде (рН 7,5 — 8,0), которая образуется имеющимися в кишечном соке бикарбонатами.

Большинство ферментов протеолитического действия, функционирующих в тонкой кишке, синтезируются в экзокринных клетках поджелудочной железы в виде проферментов, которые активируются после их поступления в двенадцатиперстную кишку (трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и Б). Гидролиз белков и пептидов, поступающих из желудка, происходит как в полости тонкой кишки, так и на поверхности энтероцитов — пристеночное или мембранное пищеварение.

Сок поджелудочной железы поступает в двенадцатиперстную кишку и смешивается с кишечным соком. Эта смесь содержит протеолитические ферменты, расщепляющие белки, альбумозы и пептоны до небольших пептидов, а затем до аминокислот. К протеолитическим ферментам относятся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы и большая группа три- и дипептидаз.

Трипсин находится в соке поджелудочной железы в неактивной форме, в виде профермента трипсиногена. Его активация происходит под действием фермента кишечного сока — энтерокиназы. Для процесса активации необходимы ионы Са2+. Процесс преобразования трипсиногена в трипсин осуществляется путем отщепления небольшого пептида с N-конца пептидной цепи фермента.

Трипсин гидролизует как нерасщепленные в желудке белки, так и высокомолекулярные пептиды, действуя главным образом на пептидные связи между аргинином и лизином. Оптимум рН для трипсина составляет 7,0 — 8,0. Трипсин делает сравнительно неглубокий гидролиз белка, образует полипептиды и небольшое количество свободных аминокислот.

Активность трипсина может снижаться под влиянием ряда ингибиторов. К ним относятся основные пептиды с молекулярной массой 9000 ед. Они обнаружены в поджелудочной железе, крови, легких, в бобах сои. Снижает активность трипсина и мукопротеин, содержащийся в сырых яйцах — авидин.

Химотрипсин — второй протеолитический фермент поджелудочной железы. Он также секретируется в неактивной форме, в виде химотрипсиногена. Под действием трипсина химотрипсиноген переходит в активный фермент — химотрипсин. Действие химотрипсина подобно действию трипсина. Оптимум рН для обоих ферментов примерно одинаковый, химотрипсин действует на белки и полипептиды, содержащие ароматические аминокислоты (тирозин, фенилаланин, триптофан), а также на пептидные связи, которые не подвергаются воздействию трипсина (метионин, лейцин).

Пептиды, которые образуютсяся в результате воздействия на белки пепсина, трипсина и химотрипсина в нижних отделах тонкой кишки, подвергаются дальнейшему расщеплению. Этот процесс осуществляют карбоксипептидазы, аминопептидазы. Эти ферменты относятся к металлоферментам. Они активируются двухвалентными ионами: Mg2+, Mn2+, Со2+, которые играют важную роль в формировании фермент-субстратного комплекса.

Механизм действия амино- и карбоксипептидаз заключается в отщеплении от пептидов конечных аминокислот, имеющих свободную аминную или карбоксильную группу.  Небольшие пептиды, которые остались нерасщепленными и состоят из трех-четырех аминокислотных остатков, подвергаются гидролизу специфическими ди- и триаминопептидазами. В соке поджелудочной железы присутствует фермент эластаза. Эластаза — эндопептидаза, которая также имеет широкую субстратную специфичность, расщепляя пептидные связи, образующиеся остатками аминокислот малого размера — глицина, аланина, серина.

Таким образом, в результате последовательного действия на белки протеолитических ферментов в кишечнике образуются свободные аминокислоты, которые всасываются в кровь через стенку кишечника.

Следующая вторая статья из цикла «Обмен белков в организме человека» — «Обезвреживание продуктов гниения белков в кишечнике». Третья статья «Обмен аминокислот в тканях»

infection-net.ru

Белковый обмен

Белки – это биологические гетерополимеры, мономерами которых являются аминокислоты — вещества, имеющие в своем составе неизменяемые части. В состав белков входят атомы углерода, кислорода, водорода, азота и иногда серы.

Аминокислоты обладают свойствами кислоты и основания (они амфотерны), поэтому могут соединяться друг с другом. Их количество в одной молекуле может достигать нескольких сотен. Чередование разных аминокислот в разной последовательности позволяет получать огромное количество различных по структуре и функциям белков.

Белки синтезируются в живых организмах и выполняют в них определенные функции. В белках встречается 20 видов различных аминокислот, некоторые из которых человек синтезировать не может, он получает их от растений, которые могут синтезировать все аминокислоты.

Именно до аминокислот расщепляются белки в пищеварительном тракте. Из этих аминокислот, поступающих в клетки организма, строятся его новые белки.

В любой клетке есть сотни белковых молекул, выполняющих различные функции. Кроме того, белки имеют видовую специфичность. Это означает, что каждый вид организмов обладает белками, не встречающимися у других видов. Это создает серьезные трудности при пересадке органов и тканей от одного человека к другому, при прививках одного вида растений на другой и т.д.

Функции белков

  • Каталитическая (ферментативная) – белки ускоряют все биохимические процессы, идущие в клетке: расщепление питательных веществ в пищеварительном тракте, участвуют в реакциях матричного синтеза. Каждый фермент ускоряет одну и только одну реакцию (как в прямом, так и в обратном направлении). Скорость ферментативных реакций зависит от температуры среды, уровня ее рН, а также от концентраций реагирующих веществ и концентрации фермента.
  • Транспортная – белки обеспечивают активный транспорт ионов через клеточные мембраны, транспорт кислорода и углекислого газа, транспорт жирных кислот.
  • Защитная – антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь — белки принимают участие в свёртывании крови.
  • Структурная – одна из основных функций белков. Белки входят в состав ядер, цитоплазмы и клеточных мембран. Белок кератин образует волосы и ногти; белки коллаген и эластин – хрящи и сухожилия. Белки входят в состав костей.
  • Сократительная – обеспечивается сократительными белками – актином и миозином.
  • Сигнальная – белковые молекулы могут принимать сигналы и служить их переносчиками в организме (гормонами). Следует помнить, что не все гормоны являются белками.
  • Энергетическая – при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры. Белки способны к биологическому окислению с выделением энергии, которая может быть использована организмом.

Роль белков

Белки в организме выполняют в основном пластическую функцию. Они входят в состав ферментов, гормонов, регулируют различные процессы в организме, осуществляют защитные функции, определяют видовую и индивидуальную особенности организма. Кроме того, белки используют в качестве энергетического материала, недостаточное обеспечение ими приводит к потере внутренних белков.

Белки участвуют в построении и обновлении клеток, ускоряют в них биохимические реакции. Белки — строители и ускорители. Белки — стимуляторы умственной деятельности.

Если белков мало, страдает центральная нервная система, плохо работают железы внутренней секреции, печень, да и другие внутренние органы, падает иммунитет, мы неспособны долго работать ни физически, ни умственно. А молодой организм вообще может перестать расти, его общее развитие резко замедляется!

Если белков слишком много — это тоже плохо! При этом происходят сбои в обмене веществ, в процессах возбуждения и торможения коры головного мозга.

Источники белков:

  • Мясо, рыба, грибы, яйца;
  • Сыр, молоко, творог;
  • Гречневая и овсяная крупы, рис, фасоль;
  • Хлеб;
  • Орехи;
  • Горох, соя;
  • Картофель.

Обмен белков

В ходе подготовительной стадии обмена, пищевые белки, сначала расщепляются в желудке пепсином, а затем в двенадцатиперстной кишке ферментом поджелудочной железы трипсином до аминокислот. Аминокислоты через кровеносные капилляры ворсинок поступают в печень. Здесь избыточные аминокислоты теряют свой азот и превращаются в жиры и углеводы.

В клетках из аминокислот строятся белки тела. В свою очередь аминокислоты являются не только источником синтеза новых структурных белков, ферментов, веществ гормональной, белковой, пептидной природы и других, но и источником энергии. Характеристика белков, входящих в состав пищи, зависит как от энергетической ценности, так и от спектра аминокислот.

Белковый обмен направлен на использование и преобразование аминокислот белков в организме человека. Организму нужны не белки из пищи, как таковые, а содержащиеся в них аминокислоты.

При переваривании пищи съеденные белки распадаются на аминокислоты, которые всасываются в кровь и из крови поступают в каждую клетку организма. Здесь они частично идут на строительство собственных белков, а частично сжигаются для получения АТФ.

Уровень содержания аминокислот в крови регулирует печень. В печени происходит разложение излишка аминокислот. Из образовавшегося аммиака синтезируется мочевина, которая затем выводится почками и кожей.

Остатки аминокислот используются, как энергетический материал, и преобразуются в глюкозу, избыток которой превращается в гликоген. В клетках белки распадаются до углекислого газа, воды, мочевины, мочевой кислоты и др. Они выводятся из организма.

Белки используются в организме в первую очередь в качестве пластических материалов. Потребность в белке определяется тем его минимальным количеством, которое будет уравновешивать его потери организмом.

Обновление и распад белка. Белки находятся в состоянии непрерывного обмена и обновления. В организме здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Скорость распада и обновления белков организма различна – от нескольких минут до 180 суток (в среднем 80 суток).

При этом многие белки у одного и того же организма обновляются с разной скоростью. Намного медленнее обновляются мышечные белки. Белки плазмы крови у человека имеют период полураспада около 10 суток, а гормоны белково-пептидной природы живут всего несколько минут.

Источником свободных аминокислот в первую очередь являются белки плазмы, ферментные белки, белки печени, слизистой оболочки кишечника и мышц, что позволяет длительное время поддерживать без потерь обновление белков мозга и сердца.

У человека за сутки подвергаются разрушению и синтезу около 400 г белка. Причем около 70 % образовавшихся свободных аминокислот снова идет на синтез нового белка, около 30 % превращается в энергию и должно пополняться экзогенными аминокислотами из пищи.

Десять аминокислот из 20 (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) в случае их недостаточного поступления с пищей не могут быть синтезированы в организме и называются незаменимыми. Другие десять аминокислот заменимы, так как могут синтезироваться в организме. Те и другие очень важны для организма.

Белки, содержащие полный набор незаменимых аминокислот, называются биологически полноценными. В сутки в организм взрослого человека должно поступать с едой около 70—90 г белка (1 г на 1 кг массы тела), причем 30 г белка должно быть растительного происхождения.

Из аминокислот, полученных в процессе пищеварения, синтезируются специфические для данного вида, организма и для каждого органа белки. Часть аминокислот используются как энергетический материал, т. е. подвергаются расщеплению.

Азотистый баланс. О количестве белка, подвергшегося распаду за сутки, судят по количеству азота, выводимого из организма человека. В 100 г белка содержится 16 г азота. Таким образом, выделение организмом 1 г азота соответствует распаду 6,25 г белка.

За сутки из организма взрослого человека выделяется около 3,7 г азота, т. е. масса разрушившегося белка составляет 3,7 х 6,25 = 23 г, или 0,028 – 0,075 г азота на 1 кг массы тела в сутки (коэффициент изнашивания Рубнера).

Если количество азота, поступающего в организм с пищей, равно количеству азота, выводимого из организма, то организм находится в состоянии азотистого равновесия.

Если в организм поступает азота больше, чем выделяется, то это свидетельствует о положительном азотистом балансе (ретенция азота). Он возникает при увеличении массы мышечной ткани (интенсивные физические нагрузки), в период роста организма, беременности, во время выздоровления после тяжелого заболевания.

Состояние, при котором количество выводимого из организма азота превышает его поступление в организм, называют отрицательным азотистым балансом. Оно возникает при питании неполноценными белками, когда в организм не поступают какие-либо из незаменимых аминокислот, при белковом или полном голодании.

Необходимо потребление не менее 0,75 г белка на 1 кг массы тела в сутки, что для взрослого здорового человека массой 70 кг составляет не менее 52,5 г полноценного белка. Для надежной стабильности азотистого баланса рекомендуется принимать с пищей 85 – 90 г белка в сутки.

У детей, беременных и кормящих женщин эти нормы должны быть выше. Дети, которые растут, нуждаются в дополнительном количестве белков (4-5 г на 1 кг массы тела в сутки). Младшие школьники 6-7 лет в среднем должны употреблять до 70 г чистого белка в сутки, старше 7 лет — 75-80 г.

Важно, чтобы дети получали только оптимальное количество полноценных белков. При излишках белковой пищи у детей исчезает аппетит, нарушается кислотно-щелочной баланс, увеличивается выведение азота с мочой и калом.

Количество поступающего белка зависит и от выполняемой физической нагрузки. При средней нагрузке человек должен получать 100—120 г белка в сутки, а при тяжелой физической работе количество белка возрастает до 150 г.

Разрушение белков в организме и выведение азота с мочой не прекращается даже при отсутствии белков в пище. При безбелковой диете за сутки разрушается примерно 331 мг собственных белков на 1 кг массы тела. Для человека с массой тела 70 кг это составляет 23.2 г и называется «коэффициентом износа».

Таким образом, количество белков в составе пищи, необходимых для покрытия коэффициента износа за сутки в среднем составляет 23-25 г и называется белковым минимумом. Для нормального функционирования организма взрослых людей необходим белковый оптимум, который достигается при употреблении 100-110 г белка в сутки (при значительных физических нагрузках-до 130-140 г).

Регуляция белкового обмена

На регуляцию белкового обмена влияют нервная система, гормоны гипофиза (соматотропный гормон), щитовидной железы (тироксин), надпочечников (глюкокортикоиды).

Центр регуляции белкового обмена расположен в гипоталамусе промежуточного мозга. Активность нейросекреторных клеток этого центра передается в гипофиз, а тот, в свою очередь, своими гормонами влияет на обмен веществ и на активность других желез.

Так, например, соматотропный гормон гипофиза (гормон роста) задерживает белки (азот) в организме и стимулирует рост размеров и массы всех органов.

Гормоны щитовидной железы (тироксин и трийодтиронин) стимулируют синтез белка и рост тканей. Гормоны надпочечников (гидрокортизон и кортикостерон) стимулируют синтез белков в печени и способствуют его распаду в мышечной и лимфоидных тканях, то есть регулируют обменные процессы.

Пищевая ценность белка

Пищевая ценность белка обеспечивается наличием незаменимых аминокислот, углеводородные скелеты которых не могут синтезироваться в организме человека, и они соответственно должны поступать с пищей. Они также являются основными источниками азота. Суточная потребность в белках 80–100г, половина из которых, должна быть животного происхождения.

Потребность в белке – это количество белка, которое обеспечивает все метаболические потребности организма. При этом обязательно учитывается физиологическое состояние организма с одной стороны, а с другой стороны, свойства самих пищевых белков и пищевого рациона в целом. От свойств компонентов пищевого рациона зависит переваривание, всасывание и метаболическая утилизация аминокислот.

Потребность в белке состоит из двух компонентов:

  • Первый должен удовлетворить потребность в общем азоте, обеспечивающем биосинтез заменимых аминокислот и других азотсодержащих эндогенных биологически активных веществ. Собственно потребность в общем азоте и есть потребность в белке.
  • Второй компонент определяется потребностью организма человека в незаменимых аминокислотах, которые не синтезируются в организме. Это специфическая часть потребности в белке, которая количественно входит в первый компонент, но предполагает потребление белка определенного качества, т.е. носителем общего азота должны быть белки, содержащие незаменимые аминокислоты в определенном количестве.

Белки животного происхождения содержат полный набор незаменимых аминокислот. Однако, наряду с целым рядом преимуществ белки имеют и недостатки, главными из которых являются достаточно токсичные продукты катаболизма (аммиак, продукты гниения белков в толстом кишечнике) и довольно сложные пути метаболизма.

www.sdorov.ru

Обмен белков в организме

Процессы распада и синтеза белков

Все белковые соединения можно разделить на собственно белки — протеины и протеиды. Протеины состоят из аминокислот, в структуре протеидов содержатся, кроме того, сложные вещества небелковой природы (нуклеиновые кислоты и др.). Аминокислотный состав белков пищевых продуктов определяет их биологическую ценность для животного организма, что связано с особенностями обмена белков организма. Существенное отличие белкового обмена от углеводного или жирового обмена заключается в том, что в животном организме белки, а точнее многие составляющие их аминокислоты не могут синтезироваться из органических веществ и из аммиака.

Синтез аминокислот возможен лишь при наличии в организме соответствующей а-кетокислоты, образующейся в качестве промежуточного продукта метаболизма углеводов и жиров. Аминокислоты, которые могут быть синтезированы в животном организме, называются заменимыми (аланин, глутаминовая кислота, тирозин и др.). Заменимые аминокислоты синтезируются в значительном количестве независимо от поступления их с белками пищи. Другие — незаменимые аминокислоты (лейцин, триптофан, фенилаланин и др.) не могут синтезироваться в организме и должны поступать с пищей. В зависимости от содержания в белках пищи незаменимых аминокислот эти белки делят на биологически полноценные (с полным набором незаменимых аминокислот) и неполноценные (при отсутствии одной или нескольких незаменимых аминокислот).

Отличительная особенность белкового обмена заключается в том, что в организме нет депо белковых соединений. Весь белок организма входит в структуру клеточных элементов тканей и жидкостей организма. Поэтому при отсутствии регулярного притока белковых веществ наблюдается частичное разрушение различных клеточных структур, т. е. появляются признаки «белкового голодания».

После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь. В кровь всасывается также незначительное количество полипептидов - соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, причем белок, который образуется в клетках человеческого организма, отличается от потребленного белка и характерен для человеческого организма.

Образование нового белка в организме человека и животных идет беспрерывно, так как в течении всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки, кишечника и т. д. создаются новые, молодые клетки. Для того чтобы клетки организма синтезировали белок, необходимо, чтобы белки поступали с пищей в пищеварительный канал, где они подвергаются расщеплению на аминокислоты, и уже из всосавшихся аминокислот будет образован белок.

Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, он вызывает ряд серьезных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушение сердечной деятельности и общих судорогах.

Белки не могут быть заменены какими-либо другими пищевыми веществами, так как синтез белка в организме возможен только из аминокислот.

Для того чтобы в организме мог произойти синтез присущего ему белка, необходимо поступление всех или наиболее важных аминокислот.

Из известных аминокислот не все имеют одинаковую ценность для организма. Среди них есть аминокислоты, которые могут быть заменены другими или синтезированными в организме из других аминокислот; наряду с этим есть и незаменимые аминокислоты, при отсутствии которых или даже одной из них белковый обмен в организме нарушается.

Белки не всегда содержат все аминокислоты: в одних белках содержится большее количество необходимых организму аминокислот, в других - незначительное. Разные белки содержат различные аминокислоты и в разных соотношениях.

Белки, в состав которых входят все необходимые организму аминокислоты, называются полноценными; белки, не содержащие всех необходимых аминокислот, являются неполноценными белками.

Получение белков

Травоядные животные получают с пищей растительные белки, синтезированные зелеными растениями, хищные животные — белки животного происхождения. Пищевые продукты, потребляемые человеческим организмом, содержат разное количество белка: богатые белками — мясо, рыба, бобы, яйца и др., бедные белками — овощи, фрукты. Промежуточное место в этом отношении занимают хлеб и другие продукты.

Ежедневно человеческий организм должен получать около 100 г белковых соединений, которые в виде аминокислот поступают в кровеносное русло и затем разносятся по всем органам и тканям. Аминокислоты в организме выполняют в основном пластическую функцию: служат материалом для синтеза специфических белков, гормонов (например, инсулина, глюкагона, гормонов гипофиза и др.), азотистых небелковых составных частей клеток и тканей. За счет аминокислот пищевого белка восстанавливаются белковые соединения, разрушенные в процессе жизнедеятельности организма. В молодом растущем организме пищевой белок идет не только для синтеза распавшихся белков, но и для увеличения биомассы: белковых компонентов тканей и клеток. У взрослых животных белки тела замещаются, обновляются с различной скоростью: период обновления общего белка составляет у человека 80 дней, у крысы — 17 дней. Белковые соединения у животных подвергаются сложному циклу химических превращений, в результате которых образуются конечные продукты азотистого обмена — мочевина, мочевая кислота и другие соединения, выделяющиеся из организма и поступающие в почву. В почве эти вещества под воздействием микроорганизмов превращаются в аммиак, нитраты и нитриты, служащие продуктами азотистого питания растений.

Для человека важно поступление полноценных белков, так как из них организм может свободно синтезировать свои специфические белки. Однако полноценный белок может быть заменен двумя или тремя неполноценными белками, которые, дополняя друг друга, дают в сумме все необходимые аминокислоты. Следовательно, для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались полноценные белки или набор неполноценных белков, по аминокислотному содержанию равноценных полноценным белкам.

Поступление полноценных белков с пищей крайне важно для растущего организма, так как в организме ребенка не только происходит восстановление отмирающих клеток, как у взрослых, но и в большом количестве создаются новые клетки.

Обычная смешанная пища содержит разнообразные белки, которые в сумме обеспечивают потребность организма в аминокислотах. Важна не только биологическая ценность поступающих с пищей белков, но и их количество. При недостаточном количестве белков нормальный рост организма приостанавливается или задерживается, так как потребности в белке не покрываются из-за его недостаточного поступления.

К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

"Обработка" поступивших белков организмом

Цикл сложных химических превращений белковых веществ в организме животного начинается с гидролитического их расщепления в желудочно-кишечном тракте под действием протеолитических ферментов. Образующиеся вначале достаточно сложные высокомолекулярные белковые соединения (альбумозы, пептоны) в последующих отделах кишечника под действием других протеолитических ферментов распадаются на три- и дипептиды и, наконец, на отдельные аминокислоты. Ежедневно в кровь взрослого человека всасывается из кишечника более 100 г различных аминокислот, образованных в результате гидролитического расщепления белков пищи.

При синтезе белков в клетках и тканях организма могут быть использованы не только отдельные аминокислоты, но» и более сложные белковые соединения типа. полипептидов. В биосинтезе тканевого белка важная роль принадлежит нуклеиновым кислотам, входящим в структуру ядра и протоплазмы клеток. Расщепление белка в клетках происходит в два этапа: вначале белковая молекула гидролизуется до аминокислот, затем расщепляется молекула аминокислоты. Аминокислоты, не использованные для синтеза белковых веществ и других азотистых соединений, образующих структуру живой клетки, подвергаются глубокому распаду с образованием конечных продуктов. Разрушение аминокислоты происходит путем дезаминирования, т. е. отщеплением аминогруппы. Безазотистый остаток молекулы через ряд промежуточных стадий превращается в глюкозу, претерпевающую затем ряд химических превращений по типу углеводного обмена. Азот белка, не имеющий энергетического значения, в виде аммиака превращается затем у млекопитающих в мочевину и выделяется с мочой (у птиц в виде мочевой кислоты).

Обычно белковые соединения окисляются в тканях животного организма не до конца, в результате чего из организма выделяется определенная часть белковых соединений в виде продуктов неполного окисления. При распаде белковой молекулы в организме освобождается некоторое количество вредных ядовитых продуктов, нейтрализация которых происходит в печени.

Регуляция обмена белков в организме

Регуляция белкового обмена осуществляется нейрогуморальным путем, однако конечным звеном управляющих воздействий, как правило, являются гуморальные влияния (действие гормонов, витаминов). Активное участие в биосинтезе белков организма принимают витамин. B12 — никотиновая кислота; гормон островковой ткани поджелудочной железы — инсулин оказывает влияние на азотистый обмен, способствуя синтезу белка в тканях; на белковый обмен в организме оказывают влияние также гормоны гипофиза (гормон роста), гормон щитовидной железы (тироксин), гормоны коры надпочечников и половые гормоны. Белковый обмен в организме существенным образом меняется под действием центральной нервной системы, включая кору больших полушарий. Хорошо известны случаи условно-рефлекторного изменения интенсивности обмена белков. О значительной роли сложнорефлекторной регуляции белкового обмена свидетельствует факт специфического динамического действия приема пищи, когда изменения интенсивности обмена веществ, включая и белковый обмен, начинаются задолго до распада пищевых веществ и попадания в кровь конечных продуктов их гидролиза. Так, например, основной обмен организма повышается в среднем на 16% при приеме белковой пищи.



biofile.ru

Белки - наиболее ценные компоненты пищи

белки

Белок является важным строительным материалом нашего организма. Из него состоит каждая клетка организма, он входит в состав всех тканей и органов. Кроме того, особая разновидность белков исполняет роль ферментов и гормонов в живом организме.

Помимо строительной функции, белок также может являться источником энергии. А в случае избытка белка, печень «предусмотрительно» преобразует белок в жиры, которые откладываются про запас в организме (как избавиться от такого жира?).

В теле человека содержится 22 аминокислоты: 13 аминокислот организм может синтезировать самостоятельно из имеющегося строительного материала, а 9 из них он может получить только с пищей.

В процессе усвоения организмом белки распадаются на аминокислоты, которые в свою очередь поставляются в разные части организма, для выполнения своих основных функций. Белки (в виде аминокислот) входят в состав крови, являются составляющими гормональной системы, щитовидной железы, влияют на рост и развитие организма, регулируют водный и кислотно-щелочной баланс организма.

Продукты богатые белком

Белок из мяса и яиц

Продукты Вес порции Количество белка, г
Куриная грудка с кожей, жаренная 100 г 29,20
Грудка индейки с кожей, жаренная 100 г 28,71
Говядина, нижняя часть, без жира, тушенная 85 г 27,85
Свинина филе, запеченное 85 г 25,94
Свинина на ребре, тушенная 85 г 24,70
Говядина, филе, запеченная 85 г 22,92
Ягненок, каре 85 г 21,68
Утка с кожей, жаренная 100 г 18,99
Куриное филе с кожей, жаренное 62 г 15,54
Куриная ножка с кожей, жаренная 52 г 14,06
Яйцо, сваренное вкрутую 2 яйца (100 г) 12,58

Белок из морепродуктов

Морепродукты это не только богатый источник белка, они также содержат большое количество Омега-3 жирных кислот.

Продукты Вес порции Количество белка, г
Сельдь атлантическая 1 филе (143 г) 32,93
Каракатица 100 г 32,48
Лосось (консервированный) 100 г 30,70
Осьминог 100 г 29,82
Филе тунца 100 г 28,21
Телапия 100 г 26,15
Камчатский краб 134 г 25,93
Моллюски 100 г 25,55
Мидии 100 г 23,80
Сардины в томатном соусе (консерва) 114 г 23,78
Скумбрия атлантическая 1 филе (146 г) 20,99
Гребешки 100 г 20,54
Креветки 85 г 19,36
Кальмары 100 г 17,94
Хамса, консерва в масле 100 г 13,00
Камбала 85 г 12,95

Растительный белок

Бобы и соя отличные растительные продукты, богатые белком. Если у вас аллергия на бобы, можно поискать ферментированные бобы, или например лимонное сорго, оно тоже богато белком.

Продукты Вес порции Количество белка, г
Тофу 244 г 30,94
Лимонное сорго, готовое 100 г 18,19
Бобы надоу 100 г 17,12
Тыквенные семечки, жаренные 56 г 16,92
Черные бобы, отварные 172 г 15,24
Нут, отварной 164 г 14,53
Пророщенные соевые бобы 100 г 13,10
Зеленые бобы 100 г 12,35
Консервированная фасоль 254 г 12,07
Орехи 71 г 11,90
Семена подсолнечника, жаренные 56 г 10,93
Чечевица 100 г 9,02
Соевое молоко 1 чашка 7,95
Авокадо 304 г 6,78
Дикий рис 164 г 6,54
Коричневый рис 195 г 5,03
Белый рис, длиннозернистый 158 г 4,25

❂ Суточная потребность в белках ❂

Суточную потребность в белке можно рассчитать исходя из индекса массы тела (ИМТ). Для того чтоб узнать свой ИМТ нужно свой вес поделить на рост в квадрате. Например, вес 80кг делим на рост 1,75 м2 (3,0625) и получаем 26 (26,122, есть быть уж совсем точным).

Всемирная организация здравоохранения (ВОЗ) рекомендует в качестве ежедневной нормы потребления белка для мужчин и женщин 0,66-0,8 грамм белка на каждый килограмм идеальной массы тела. Тут интересны три момента: ① ВОЗ не делает половых различий, ② рекомендует считать белок исходя из долженствующего, а не существующего веса тела, ③ 0,66 г - это минимальное, а 0,8 - максимальное количество белка, которое нужно употреблять.

Как же узнать свой идеальный вес? Для этого нужно рост в квадрате умножить на ИМТ. Продолжим пример: 1,75 м2 x 26 = 79 кг. Теперь считаем суточную потребность в белках: наш идеальный вес 79 кг умножаем на 0,66 г белка - получаем 53, и также 79 кг умножаем на 0,8 г - получаем 63 г белка. Итого: человек с ростом 175 см и ИМТ 26 должен употреблять от 53 до 63 грамм белка в сутки.

Складывается впечатление, что ВОЗ осторожничает (если не сказать «жадничает») в своих рекомендациях. Ибо таких количеств белка может быть достаточно, если человек физически не активен (а он должен быть активен), если человек не подвержен воздействию отрицательного стресса (а он подвержен), если у человека нет менструации (а у некоторых она бывает). Учитывая, что ВОЗ и витамин С до сих пор предлагает употреблять около 100 г в сутки (дозы, установленные лет 30-50 тому назад), то к рекомендуемым дозам употребления белка тоже нужно относиться весьма критически.

❂ Полезные свойства белка ❂

Именно белок яйца обладает очищающими свойствами. Доказано, что яичный белок учавствует в снижении уровня холестерина в крови, тем самым способствуя улучшению работы сердца и сосудов.

Наравне с низкой калорийностью, белок яйца - это источник протеина - фермента, производящего энергию в клетке.

Белок содержит практически все жизненно - важные аминокислоты, способствующие работе мозга, регенерации клеток и улучшению соединительной ткани.

В белке очень много витамина группы В, а также витамина Е. По количеству витамина D белок яйца превосходит только рыбий жир.

❂ Содержание белка в организме ❂

Проблемы, возникающие при недостатке белка

Недостаток белков в питании вызывает у детей замедление роста и развития, а у взрослых - глубокие изменения в печени, нарушение деятельности желез внутренней секреции, изменение гормонального фона, ухудшение усвоения питательных веществ, проблемы с сердечной мышцей, ухудшение памяти и работоспособности. Все это связано с тем, что белки участвуют практически во всех процессах организма.

В 70 годах отмечались смертельные случаи у людей, длительное время соблюдающих низкокалорийные диеты с выраженным недостатком белка. Происходило это из-за серьезных нарушений в деятельности сердечной мышцы.

Дефицит белка уменьшает устойчивость организма к инфекциям, так как снижается уровень образования антител. Нарушается синтез и других защитных факторов - лизоцима и интерферона, из-за чего обостряется течение воспалительных процессов. Кроме того, белковая недостаточность часто сопровождается авитаминозом В12, А, Д, К и так далее, что также влияет на состояние здоровья.

Дефицит полноценного белка в организме может иметь пагубные последствия практически для всего организма. Нарушается выработка ферментов и соответственно усвоение важнейших питательных веществ. При нехватке белка ухудшается усвоение некоторых витаминов, полезных жиров, многих микроэлементов. Т.к. гормоны являются белковыми структурами, недостаток белка может привести к серьезным гормональным нарушениям.

Любая физическая активность наносит вред клеткам мышц, и чем больше нагрузка, тем больший вред она наносит мышцам. Для "ремонта" поврежденных мышечных клеток требуется достаточное количество качественного белка. Благотворное влияние физической активности на состояние здоровья может проявляться только при достаточном поступлении белка с пищей. Увеличьте потребление белка при занятиях спортом от 1,5 гр. на кг веса (при игровых видах спорта) и до 1,5-2 гр./кг белка (при длительных и интенсивных нагрузках, таких как марафон или бодибилдинг).

Избыток белка

Если количество белка в рационе незначительно превышает необходимое для поддержания азотистого баланса, то вреда от этого нет. Избыток аминокислот в данном случае просто используется как источник энергии. В качестве примера можно сослаться на эскимосов, которые потребляют мало углеводов и примерно в десять раз больше белка, чем требуется для поддержания азотистого баланса.

Однако, для большинства людей при отсутствии интенсивных физических нагрузок потребление более 1,7 гр. на кг веса может привести к неблагоприятным последствиям. Избыточное поступление белков с пищей не приносит пользу, поскольку они не могут накапливаться в организме. Вместо этого печень превращает излишки белков в глюкозу и азотистые соединения, такие как мочевина, которую почки должны активно выводить из организма. Кроме того особую важность приобретает соблюдение оптимального питьевого режима. Избыточное количество белков приводит к кислой реакции организма, что в свою очередь увеличивает потерю кальция. Кроме того, богатая белком мясная пища часто содержит такие продукты, как пурины, и некоторые из них в процессе метаболизма могут откладываться в суставах, вызывая развитие подагры. Надо отметить, что проблемы, связанные с избытком белка, встречаются крайне редко! В нашем обычном рационе чаще всего не хватает полноценного белка!

Оценивают достаточность белка в рационе по азотистому балансу. В организме человека постоянно происходит синтез новых белков и удаление из него конечных продуктов белкового обмена. В состав белков входит азот, который не содержится ни в углеводах, ни в жирах. И если он откладывается в запас в организме, то только в составе белков. Если же в результате распада белков азот выходит из их состава, то он удаляется с мочой. Для того чтобы организм функционировал на оптимальном уровне, необходимо восполнение удаляемого азота. Если количество восполняемого пищей азота соответствует количеству экскретируемого, то такое состояние носит название азотистого (или протеинового) баланса.

Белковая пища для мышц и похудения

Как уже сказано, при белковой диете основную часть рациона составляет именно белковая пища. Давайте выясни, какая именно это должна быть еда.

Примерное меню белковой диеты на 2 недели

1-й и 14-й день

Завтрак: натуральный кофе без сахара, 20 грамм сыра.

Обед: 2 сваренных вкрутую яйца, салат из капусты с растительным маслом, 200 мл. томатного сока.

Ужин: 200 грамм вареной нежирной рыбы.

2-й и 13-й день

Завтрак: натуральный кофе без сахара, 1 сухарик.

Обед: запеченная в духовке рыба, салат из помидоров и огурцов с растительным маслом.

Ужин: 150 грамм отварной говядины и 200 грамм кефира.

3-й и 12-й день

Завтрак: черный чай с 2 ломтиками сыра

Обед: крупный кабачок, нарезанный кольцами и поджаренный на масле, 2 яблока запеченных с творогом.

Ужин: 150 грамм вареной курицы, 2 яйца, салат из свежей капусты с маслом.

4-й и 11-й день

Завтрак: несладкий черный чай, 200 грамм творога.

Обед: сырое яйцо, 20 грамм сыра, 3 отварные моркови.

Ужин: яблоко, апельсин, персик.

5-й и 10-й день

Завтрак: 1 тертая морковка с лимонным соком.

Обед: вареная рыба, 200 мл. томатного сока.

Ужин: фрукты на выбор

6-й день и 9-й день

Завтрак: несладкий кофе, 3 орешка миндаля.

Обед: 150 грамм отварной индюшки, салат из капусты и моркови.

Ужин: 200 грамм творога с 2-мя тертыми морковками.

7-й и 8-й день

Завтрак: несладкий чай, 1 кусочек сыра.

Обед: 200 грамм отварной говядины и 1 огурец.

Ужин: 2 яйца, 1 помидор.

В меню представлен примерный список белковой пищи, являющейся источником белка для организма человека. Стоит отметить, что употребление белковой пищи требует большего количества воды в организме. Поэтому, для предотвращения обезвоживания, необходимо ежедневно выпивать не менее 2 литров воды.

www.pravilnoe-pokhudenie.ru


.